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Abstract

Computational Optimal Control of Nonlinear Systems with Parameter

Uncertainty

by

Chris D. Phelps

A number of emerging applications in the field of optimal control theory require the

computation of an open-loop control for a dynamical system with uncertain parame-

ters. In this dissertation we examine a class of uncertain optimal control problems, in

which the goal is to minimize the expectation of a predetermined cost functional subject

to such an uncertain system. We provide a computational framework for this class of

problems based on a discretization of the parameter space. In this approach, a set of

nodes from the parameter space and corresponding weights are selected, and the ex-

pectation of the cost functional is approximated by a finite sum. This process results

in a sequence of standard optimal control problems which can be solved using existing

techniques. However, it is well-known that an inappropriately designed discretization

scheme for an optimal control problem may fail to converge to the optimal solution,

therefore further analysis must be performed to examine the convergence properties of

the scheme. We provide this analysis for a scheme based on quadrature methods for the

approximation of the expectation in the cost functional. This analysis demonstrates that

an accumulation point of a sequence of optimal solutions to the approximate problem is

an optimal solution of the original problem. Furthermore, we examine the convergence



of the adjoint states for the approximation based on the quadrature scheme, which leads

to a Pontryagin-like necessary condition which must be satisfied by these accumulation

points. To address the exponential growth of computational cost with respect to the

dimension of the parameters, we introduce a numerical algorithm based on sample av-

erage approximations, in which an independently drawn random sample is taken from

the parameter space, and the expectation in the objective functional is approximated

by the sample mean. Using a generalization of the strong law of large numbers, we

analyze the convergence properties of this approximation. In addition, we develop an

optimality function for the class of uncertain optimal control problems based on the

L2-Frechet derivative of the objective functional, which provides a necessary condition

for an optimal solution. By demonstrating that an accumulation point of a sequence of

stationary points for the approximate problem is a stationary point of the original prob-

lem, we demonstrate the approximation scheme based on sample averages is consistent

in the sense of Polak. These numerical algorithms for the uncertain optimal control

problem are applied to real-world scenarios from the fields of optimal search theory and

ensemble control.
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Chapter 1

Introduction

The field of optimal control has a long and storied history. In 1696 Johann

Bernoulli proposed the brachistochrone problem in which the goal is to determine the

curve which will minimize the time needed for an object to travel between two points [86].

This drew the interest of several giants of mathematics, including Leibniz, l’Hopital,

and Newton, who all proposed solutions. This gave rise to the field of variational

analysis, which is concerned with minimization problems in which the decision variable

is a function, e.g., the problem of finding the shortest path between two points or the

smallest area which can be enclosed with a specified perimeter.

Over the past century, a large research effort has been put into optimal control

problems, which differ from standard calculus of variation problems in that the function

must additionally satisfy a specific dynamic constraint. In this thesis, we focus on

optimal control problems with nonlinear dynamics and pointwise control constraints,

for example, the following optimal control problem with Bolza cost.
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Bolza Problem. Find a state-control pair (x, u) to minimize the objective functional

J(x, u) = F (x(T )) +

∫ T

0
r(x(t), u(t))dt, (1.1)

subject to the dynamical system

ẋ(t) =f(x(t), u(t)), x(0) = x0, (1.2)

and the control constraint

g(u(t)) ≤ 0 for all t ∈ [0, T ]. (1.3)

Here x : [0, T ] 7→ Rnx , u : [0, T ] 7→ Rnu , F : Rnx → R, r : Rnx × Rnu → R, and

f : Rnx × Rnu 7→ Rnx .

While these problems do not typically lend themselves to direct solutions, the

celebrated necessary condition known as Pontryagin’s minimum principle provides a

Hamiltonian minimization criterion which often leads to a solution [63]. The principle

provides a boundary value problem known as the state-adjoint system. The solutions

to this boundary value problem serve as candidate solutions to the nonlinear optimal

control problem. In some special cases, this approach provides an analytic solution,

as in the case when the problem has linear dynamics and a quadratic cost functional.

However, it is well known that in general, problems with nonlinear dynamics and control

constraints are not guaranteed to admit a closed form solution. Even in these cases,

Pontryagin’s minimum principle provides a tool to solve the control problem by solving

the boundary value problem numerically.
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In the class of algorithms for optimal control known as indirect methods, the

approach is to apply existing methods for the numerical solution of differential equa-

tions to the boundary value problem formulated using Pontryagin’s minimum principle.

However, indirect methods for nonlinear optimal control have two major shortcomings.

First, formulating the boundary value problem can be very labor intensive and must be

performed by an expert in the field of optimal control. Second, it is well known that

the boundary value problem resulting from Pontryagin’s minimum principle is very sen-

sitive to the initial guess. It makes a good initial guess necessary for a boundary value

problem solver to converge. For many engineering applications, finding a good initial

guess, especially for adjoint variables, is very challenging, since these adjoint variables

typically do not have clear physical meaning.

In recent decades, a new class of algorithms called direct methods have been

developed which do not suffer from these drawbacks. In this approach, a discretiza-

tion scheme is applied in the time domain, resulting in a sequence of approximating

high-dimensional nonlinear programming problems which can be solved using existing

numerical optimization techniques. However, the apparent simplicity of this approach

belies deep theoretical issues encountered when approximating optimization problems.

For each proposed discretization scheme, careful analysis must be performed to guar-

antee that the scheme provides a meaningful approximation to the optimal control

problem. Indeed, counterexamples show that an inappropriately designed discretization

scheme will lead to incorrect results when applied to control problems [14]. Therefore

it is important to demonstrate consistency of the discretization scheme, a property
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which guarantees that accumulation points of a sequence of optimal solutions to the

approximate problem will be optimal solutions to the original problem. Such consis-

tency results have been demonstrated for a number of different discretization schemes,

including Euler [61], Runge-Kutta [31] and Pseudospectral [29].

Together, theoretical results such as Pontryagin’s minimum principle and con-

sistency results for direct computational methods comprise a framework in which nonlin-

ear optimal control problems can be solved numerically. In this framework, the optimal

control problem is approximated using a discretization in the time domain, and the re-

sulting approximate problem is solved using existing numerical optimization methods.

Once consistency of the discretization scheme has been demonstrated, the optimal solu-

tion to the approximate problem is known to provide a reasonable approximation of the

optimal solution to the original nonlinear optimal control problem. This numerically

computed control can then be tested against the Pontryagin minimum principle, and

controls not satisfying this necessary condition can be disregarded, as they cannot be

an optimal solution to the control problem. In this sense, Pontryagin’s minimum prin-

ciple provides a method for the verification and validation of a numerically computed

solution.

Most of the current computational nonlinear optimal control methods do not

directly address a critical issue in control system design: the appearance of the un-

certainty. Since the uncertainty is inherent to every dynamical model, lack of ability

to incorporate uncertainty limits the application of computational optimal control in

engineering applications. In this thesis we aim to overcome this shortcomings. The
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uncertainty can stem from imprecise measurements of physical properties of the system

being controlled, incomplete information about the environment, or inability to predict

exactly the behavior of another agent. We focus on a class of problems we refer to as

the uncertain optimal control problem, in which the goal is to minimize the expected

cost, given a prior probability distribution for these unknown parameters. This formu-

lation allows optimal control problems which incorporate parameter uncertainty in the

intial state, agent dynamics, or the objective functional. The problem is formulated as

follows:

Problem C. Determine the control function u ∈ L∞([0, 1];Rnu) that minimizes the

cost functional

J [x, u] =

∫
Ω

[
F (x(1, ω), ω) +

∫ 1

0
r(x(t, ω), u(t), t, ω)dt

]
p(ω)dω (1.4)

subject to the dynamics

ẋ(t, ω) = f(x(t, ω), u(t), ω), (1.5)

initial condition x(0, ω) = x0(ω), and the control constraint g(u(t)) ≤ 0 for all t ∈ [0, 1].

In Problem C, Ω is a space of stochastic parameters with p : Ω 7→ R a probability density

function, L∞([0, 1];Rnu) is the set of all essentially bounded functions, x : [0, 1]× Ω 7→

Rnx and r : Rnx × Rnu × R1 × Rnω 7→ R.

In this thesis we provide computational framework for solving this class of

uncertain optimal control problems. The computational methods are based on a dis-

cretization of the parameter space using either a quadrature or Monte Carlo integration

scheme. A finite number of nodes are selected in the parameter space and the state vec-
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tor for the uncertain dynamical system is approximated as a large number of decoupled

systems. In the literature, other techniques have been used to make a similar approx-

imation. The stochastic collocation [6] method is similar to the quadrature scheme in

that a finite number of nodes are selected from the parameter space and the dynami-

cal system is approximated by a tensor product of polynomials. The polynomial chaos

method approximates the random state vector by using a Galerkin projection onto a set

of orthogonal basis vectors [88]. Both the stochastic collocation and polynomial chaos

methods have been applied in the area of uncertainty quantification, in which the main

goal is to analyze the propagation of uncertain through dynamical systems, in contrast

to the mitigation of uncertainty using optimal control as studied in this thesis.

Recently, the polynomial chaos approach has also been used in an optimal con-

trol setting with parameter uncertainty for special cases of Problem C [20,21,38,39]. In

these results, a polynomial chaos expansion is used to approximate state and/or control

trajectories; then the dynamics are discretized using a Galerkin projection. While the

performance of such polynomial chaos based discretization methods were tested through

numerical simulations on some simple optimal control problems, e.g., linear control sys-

tems with quadratic cost [20], Van der Pol Oscillator [21], there is no rigorous analysis

on the consistency and convergence of such schemes for solving uncertain optimal con-

trol problems. Similarly, Ref. [16] suggests a method in which the uncertain problem

is approximated using a quadratic Taylor expansion of the objective functional and the

results are compared to a Monte Carlo simulation, but no analysis of the consistency

properties of the method is provided. Some of this consistency analysis has been per-
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formed for the related optimal search [22,23] and ensemble control [73,74,76] problems.

These results are reviewed in Sections 1.1 and 1.2.

In this thesis, our goal is to provide computational framework, with rigorous

consistency and convergence analysis, for a general class of uncertainty optimal control

problems represented by Problem C. Our interest in this problem setting has two major

motivations. First, this framework can be applied to previously considered control

problems, allowing the designers to incorporate uncertainty into the formulation of an

optimal control problem. For instance, the uncertain optimal control setting may be

used to extend trajectory optimization problems to scenarios which include uncertainty

about physical parameters in the dynamical model, characteristics of the environment,

or the behavior of other agents. Second, recent applications of computational optimal

control have brought to light problems which necessitate incorporation of uncertainty

into the problem formulation. In Sections 1.1 and 1.2 we detail two of these applications,

optimal search and ensemble control, and demonstrate how they can be formulated as

Problem C.

1.1 Optimal Search Theory

The problem of formulating an optimal search strategy for an agent attempting

to detect a moving target is one topic which has generated recent interest in this class

of uncertain optimal control problems. The field of search theory traces its origins to

the U.S. Navy’s Antisubmarine Operations Research Group in 1942. Koopman joined
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in 1943 and introduced many important concepts and the basic formulation of the

problem [43]. A mathematical formulation of optimal search problem frequently used

today was provided in the seminal text of Stone [84]. This formulation of the search

problem has three main components: a model for the unknown location or motion of

the target, a model for the effectiveness of the search effort for a given strategy, and a

model for computing the probability of detecting the target when the searchers adhere

to a given search plan. Mangel [53] provides a review of the components of the problem

and various models used.

Work on the optimal search problem can be divided depending on the model

chosen for the motion of the target. The target is usually modelled as either a Markov

process (such as Brownian motion or a random walk), or as conditionally deterministic,

meaning the motion of the target depends on a random vector whose true value is

unknown to the searcher. Work on the problem of Markovian motion first focused on

calculating the posterior distribution of the target’s position [34,51,52], and developing

necessary and sufficient conditions for the search plan to be optimal [36,37,77]. Ohsumi

[55] provides a necessary condition, as well as a method to numerically calculate an

optimal search trajectory. Early studies into the conditionally deterministic problem

considered in this work focused on target motion subject to additional special restrictions

[82,83] or targets moving in discrete space [64]. The work of Ref. [64] is significant as it

is the first to develop a necessary condition for optimality in an optimal control setting.

In Ref. [49], an optimal control approach is used to derive a necessary condition in the

case of a target moving in continuous space, when the searcher’s dynamics are given by

8



a single integrator with box constraints.

To briefly demonstrate how the search for moving targets can be modeled as

an uncertain optimal control problem, consider the problem of a searcher looking for a

moving target in order to maximize the probability of detecting the target over some time

horizon [0, T ]. Let the searcher trajectory, x(t), be determined by the dynamical system

ẋ = f(x, u), with initial condition x0 and control constraint g(u(t)) ≤ 0 for all t ∈ [0, T ].

Because our model incorporates nonlinear dynamics and control constraint, it can be

applied to problems with various types of vehicles, such as autonomous helicopters or

surface vessels. However, in the simulations presented in later part of this thesis (see

Section 3.5), we assume the dynamics of the search vehicle is modelled by the Dubin’s

vehicle given by

ẋ1(t) = v cosx3(t),

ẋ2(t) = v sinx3(t),

ẋ3(t) = u(t), |u| ≤ umax

where (x1, x2) represents the position of the searcher and x3 is the heading angle. The

forward velocity, v, is a given constant. The control, u, is the turning rate with maximum

angular velocity umax.

Now consider a moving target whose motion is assumed to be conditionally

deterministic. By conditionally deterministic we mean that the motion of the target

depends on a stochastic parameter, and if the value of this parameter were known the

location of the target would be known for all time. In other words, there exists a random
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vector ω ∈ Ω ⊂ Rnω , such that the trajectory of the target conditioned on ω is given by

y(·, ω). It is assumed that the probability density of ω over Ω is known to the searchers

and is given by p : Ω 7→ R+.

The final component of the search model is a function describing the effective-

ness of the searcher. Let r̃ : Rnx ×Rny 7→ R be the instantaneous rate of detection such

that the probability of detection in a sufficiently small interval [t, t + ∆t), conditioned

on ω, is given by r̃(x(t), y(t, ω))∆t. The rate function r̃ is chosen to model the qualities

of sensors such as acoustic and sonar sensors. For example, for sonar type of sensors,

the detection rate function can be given by the Poisson scan model

r̃(x(t), y(t, ω)) = β Φ
(F k −D ‖x(t)− y(t, ω)‖2 − b

σ

)
,

where Φ(·) is the standard normal cumulative distribution function, ‖x(t)− y(t, ω)‖ is

the Euclidean distance between the searcher and the target, β is the scan opportunity

rate, F k is the so-called “figure of merit” (a sonar characteristic), and σ reflects the

variability in the “signal excess”.

Denote by P (t) the probability of non-detection at time instance t conditioned

on ω. Then

P (t+ ∆t) = P (t)(1− r̃(x(t), y(t, ω))∆t).

As ∆t→ 0 we get

P (t) = exp
(
−
∫ t

0
r̃(x(τ), y(τ, ω))dt

)
.

Thus the probability that the target is not detected in the time interval [0, T ] is given
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by the integral

J =

∫
Ω

exp
(
−
∫ T

0
r̃(x(t), y(t, ω))dt

)
p(ω)dω. (1.6)

If the goal is to find the control input which produces a search trajectory

to maximize the probability of finding the target, the optimal search problem can be

formulated as an optimal control problem subject to parameter uncertainty as following:

Find a state-and-control pair (x1, x2, x3, u) which minimizes the objective functional:

J =

∫
Ω

exp
(
−
∫ T

0
r̃(x(t), y(t, ω))dt

)
p(ω)dω,

subject to the dynamics

ẋ1(t) = v cosx3(t),

ẋ2(t) = v sinx3(t),

ẋ3(t) = u(t), |u| ≤ umax

x(0) = x0.

Here v, umax ∈ R+ and r̃ : R3 × R2 7→ R+.

It can be seen that above optimal search problem is indeed a special case of

the uncertainty optimal control Problem C, with uncertainty appearing only in the cost

functional.

Recent advances in computational power have made it possible to determine

the optimal search strategy numerically by solving this optimal control problem. Re-

cent works in optimal search focus on this aspect of the problem, providing numerical

algorithms to compute the optimal search strategy in special cases. Ref. [13] provides a

11



numerical method based on an Euler quadrature scheme for the special case of a target

moving at constant velocity in a channel. Ref. [22] uses a composite-Simpson scheme

for a problem with more general dynamics and an exponential detection function. In

addition, it provides a necessary condition for optimality and analyzes the consistency

properties of this method using the approach of Ref. [61, Chapter 3.3]. Ref. [71, 78]

provide numerical methods for problems which are discretized in both time and space.

In this thesis we extend these results to the broader class of uncertain optimal con-

trol problems, as well as providing consistency results for a number of approximation

schemes not previously considered in the context of optimal search.

1.2 Ensemble Control

A number of emerging applications in control theory require the design of a

single open loop signal to simultaneously control a large number of structurally identical

systems (an ensemble) with variance in the system parameters. The variance in system

parameters may arise from possibly complex interactions between the systems [28] or

inhomogeneity of the control signal due to physical limitations of the equipment [44,45].

This problem first arose in NMR spectroscopy and MRI, where a control law must be

developed to prepare the ensemble of nuclear spins in a specific configuration for an

experiment. Even a small variance in system parameters can cause dispersion of the

controlled state, making the system difficult to control. Over the years, a number of ad

hoc algorithms have been developed to design sequences of pulses which compensate for

12



this dispersion [44,45]. The emerging field of Ensemble Control looks to provide a unify-

ing mathematical framework to analyze such problems and provide new computational

tools which will allow extension of this framework to applications. The ensemble is

represented in this framework as a continuum of structurally identical systems indexed

by a parameter (or parameters) which governs the dynamics of the individual systems.

For example, consider the problem of trying to regulate an ensemble of har-

monic oscillators with variation in the natural frequency. This ensemble is governed by

the system ẋ1(t, ω)

ẋ2(t, ω)

 =

 0 −ω

ω 0


 x1(t, ω)

x2(t, ω)

+

 u1(t)

u2(t)

 ,
 x1(0, ω)

x2(0, ω)

 =

 1

0

 , (1.7)

for each ω ∈ [0, 20], t ∈ [0, T ], and the goal is to find a control u such that x(T, ω) = 0

for all ω ∈ [0, 20]. The difficulty in this and other ensemble control problems is that

a single control must be used to stabilize all members of the ensemble, and a control

which stabilizes a single member with a specific parameter value may not stabilize

another member with a different parameter value. To see this, consider Figures 1.1,

which show the dispersion of states for a control computed using a Lyapunov method

for the median case (ω = 10) and the worst case (ω = 20) scenario.

The difficulty of stabilizing this ensemble of harmonic oscillators as well as in

designing compensating pulses for magnetic resonance experiments raises the question of

ensemble controllability: whether it is possible to design a single open loop control signal

which will simultaneously transfer all members of the ensemble from a given state to a

neighborhood of a desired final state. Here both the initial and final states may depend

13
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Figure 1.1: Dispersion of states for an ensemble of harmonic oscillators. Here a sample
of state trajectories and end states is shown for a control designed using Lyapunov
methods to stabilize a-b) the median case scenario and c-d) the worst case scenario.

on the value of the parameter for each individual system. Necessary and sufficient

conditions for ensemble controllability are provided for a number of linear and bilinear

systems in Ref. [47,48], however such conditions for the general nonlinear ensemble are

absent. Even when the ensemble can be shown to be controllable, determination of the

desired control is difficult, and it is not surprising that such a control is available in closed
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form for only a small number of systems [48]. Therefore a new class of computational

methods must be developed to provide numerical solutions to ensemble control problems.

One approach to the development of computational methods for ensemble con-

trol stems from the field of optimal control. This approach leverages existing direct

methods for optimal control by formulating an objective functional for the ensemble

control problem such that the solution to the resulting optimal control problem achieves

the desired state transfer. One such framework is suggested in Ref. [48], wherein the goal

is to minimize the expectation of the square error of the final state. Ruths [73,74,76] ex-

tends the pseudospectral optimal control method [29,69] to this problem by considering

an approximation with a Legendre-Gauss-Lobatto (LGL) pseudospectral scheme in both

the parameter and time domains, and provides analysis of the consistency properties of

such a scheme.

By viewing the ensemble as a single system with stochastic parameters, the

problem of ensemble control can be shown to be a member of the class of nonlinear

optimal control problems with parameter uncertainty [73]. To demonstrate how this

approach can be used to formulate an uncertain optimal control problem, consider the

problem of trying to regulate the final state of the ensemble of harmonic oscillators with

variation in the natural frequency. We can formulate this as an optimal control problem

with parameter uncertainty by considering (1.7) as an uncertain dynamic system for a

harmonic oscillator whose natural frequency is a random variable uniformly distributed

on [0, 20]. We introduce a quadratic objective functional, which has the property that

a minimizer to the objective will also reduce the amplitude oscillator while also keeping
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the expended control energy in reasonable bounds.

The uncertain optimal control problem is: find a state and control pair (x,u)

which minimizes the objective functional

J =EP
[
β
[
(x1(T, ω))2 + (x2(T, ω))2

]
+ γ

∫ T

0

[
(u1(t))2 + (u2(t))2

]
dt

]
=β EP

[
(x1(T, ω))2 + (x2(T, ω))2

]
+ γ

∫ T

0

[
(u1(t))2 + (u2(t))2

]
dt

Subject to the uncertain dynamical system (1.7). Here β and γ are scale factors which

weight the priority of minimizing the error of the final state against minimizing the

expended control energy. This objective functional can be used to design a control

which achieves an end state in a desired neighborhood of zero, therefore the problem

of stabilizing this ensemble can be approached using the uncertain optimal control

framework considered in this thesis.

1.3 Thesis Contributions

The uncertain optimal control Problem C formulated in this chapter has the

potential to be applied to a wide variety of optimization problems, including trajectory

optimization, optimal search theory, and ensemble control. Given the difficulty in solv-

ing standard nonlinear optimal control problems, it is not surprising that the inclusion

of the uncertain parameter and expectation of the cost functional over the parame-

ter space, combined with the nonlinear dynamics and control constraints, makes this

problem particularly challenging. The literature presents several numerical methods for

special cases of this problem which are based on direct methods for optimal control,
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using either a Euler [13], Composite-Simpson [22, 23], or LGL-quadrature [73, 74, 76]

discretization of the parameter space. However, given the range of possible applications

which can be addressed in the uncertain optimal control setting, it is desirable to have

a unified computational framework providing results for the entire class of uncertain

optimal control problems.

The motivation of this dissertation is the development of this framework, in-

cluding algorithms for the numerical solution of this class of problems as well as nec-

essary conditions for validity and verification of numerically computed solutions. Our

approach is based on discretization of the parameter space using a numerical scheme

to approximate the expectation in the objective functional. The resulting approximate

problem is a standard optimal control problem which can be solved using existing di-

rect methods for standard optimal control problems. In this sense our framework is

an extension of direct methods for computational optimal control to problems with pa-

rameter uncertainty. We expand upon previous approaches for the optimal search and

ensemble control problems by demonstrating that any convergent quadrature scheme

will produce a discretized problem which is a meaningful approximation of the original

problem. Furthermore, we demonstrate a method based on sample average approxi-

mations which can be used to approach a problem with a large number of stochastic

parameters. In addition, we determine necessary conditions for optimality for the class

of uncertain optimal control problems, both in the form of an extension of Pontragin’s

minimum principle and an optimality function based on the L2-Frechet derivative of

the objective functional. By extending a broad range of results from computational op-
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timal control to the uncertain optimal control problem, we hope to provide a roadmap

for new algorithms and approximation methods to be developed for the new problem

setting with parameter uncertainty.

1.3.1 Numerical Methods for the Uncertain Optimal Control Problem

We provide a class of numerical methods for the solution of the uncertain op-

timal control problem based on a discretization scheme in the parameter space. In this

approach, a set of nodes and weights are chosen from the parameter space, and the

expectation in the objective functional is approximated by a finite sum. The result

is a sequence of approximating nonlinear optimal control problems with a Bolza form

objective functional. The advantage of this method is that the approximate problem

can be solved using existing techniques for computational optimal control [29, 41, 79].

Although the application of this approximation scheme to the uncertain optimal control

problem is straightforward, the numerical framework must be carefully analyzed as it

is known that inappropriately designed discretization schemes for optimal control may

produce incorrect results [14]. Therefore, each proposed discretization scheme must be

demonstrated to provide an approximate control which is a reasonable approximation

to the optimal control for the original problem. We provide this analysis for a variety

of discretization schemes, focusing on classes of algorithms based on either numerical

quadrature or Monte Carlo integration for the approximation of the objective functional.

We contrast this work to consistency and convergence results on standard optimal con-

trol problems, for example results in Ref. [29, 41, 42, 61], as the discretization in this
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work occurs in the parameter space rather than the time domain.

Some aspects of this analysis have been carried out in special cases for algo-

rithms based on a numerical quadrature approximation of the uncertain optimal control

problem. Ref. [22,23] uses a composite-Simpson integration scheme to discretize a two-

dimensional parameter space and develops a computational method for solving a reduced

version of this class of problems. They also analyze the performance of the computa-

tional method using Polak’s consistent approximation theory [61]. Ref. [75] provides

consistency and convergence results for a particular computational method based on a

LGL-pseudospectral approximation in both the parameter and time domains. In this

dissertation we extend these results by demonstrating that any convergent quadrature

scheme will produce an approximation of the uncertain optimal control problem which

is consistent in the sense that an accumulation point of a sequence of approximate global

minimizers will be a global minimizer to the original problem. Establishing this property

for a variety of quadrature schemes is important because the convergence properties of

the state variables depend on the collocation nodes chosen for the parameter space [88].

While algorithms based on numerical quadrature may be efficient for problems

with low-dimensional parameter spaces, such schemes are inherently limited by the curse

of dimensionality. Indeed, the dimension of the approximate problem increases exponen-

tially with an increase in the number of stochastic parameters, which renders solution

of the approximate problem intractable for problems with even a modest number of

parameters. This difficulty is inherent to the approximation of dynamical systems with

stochastic parameters and other techniques such as polynomial chaos are also subject
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to the curse of dimensionality. Therefore, in many cases Monte Carlo simulation is

required to approximate an uncertain dynamical system [6], and consistency results for

a Monte Carlo based scheme for the uncertain optimal control problem are desirable.

We propose a sample average approximation approach to the uncertain opti-

mal control problem which is applicable for high-dimensional problems. In this method,

an independently distributed random draw is taken from the parameter space, and the

expectation in the objective functional is approximated by the sample average. Early

work on the sample average approximation approach to stochastic optimization can be

found in [3, 5]. These results provide a foundation for our analysis on the uncertainty

optimal control problems. For a treatment of cases in finite dimensions; see [81]. When

applied to a problem with a finite-dimensional decision space, sample average approxi-

mation produces a sequence of approximating nonlinear programming problems. When

applied to the uncertain optimal control problem, it produces a sequence of nonlinear

optimal control problems which can be solved using existing direct methods. Because

the number of nodes sampled does not depend on the dimension of the parameter space,

this method does not suffer from the same curse of dimensionality as the previously-

considered quadrature method.

However, the difference in convergence properties between numerical quadra-

ture and the strong law of large numbers for sample averages means that the analysis

performed for the quadrature discretization scheme is not appropriate for the sample

average scheme. Instead, we take an approach from Polak’s seminal text on approxima-

tion of optimal control problems (see Polak [61, Chapter 4] or Section 2.3), which uses
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tools and concepts from variational analysis. In this approach, the convergence proper-

ties of the approximate problem are established by demonstrating the epiconvergence of

the sequence of approximate objective functionals. We provide a consistency result for

the uncertain optimal control framework using an extension of the strong law of large

numbers to random lower semicontinuous functions.

1.3.2 Necessary Conditions for the Uncertain Optimal Control Prob-

lem

Many algorithms for the numerical solution of the standard optimal control are

based on necessary conditions for optimality such as the Pontryagin minimum principle.

Research into such necessary conditions may also provide insight into the nature of the

solutions of the uncertain optimal control problem as well as new numerical tools. In ad-

dition, necessary conditions can be used for validation and verification of a numerically

computed solution. In this work we provide necessary conditions for the uncertain op-

timal control problem by extending existing theoretical results on the standard optimal

control problem with Bolza cost. We provide two separate sets of necessary conditions.

The first is a Pontraygin-like necessary condition derived by analyzing the convergence

properties of the dual problem for an approximation based on numerical quadrature.

The second is an optimality function based on the L2-Frechet derivative of the objective

functional for the original uncertain optimal control problem.

For the uncertain optimal control Problem C discussed in Section 1.3.1 a

Pontryagin-like necessary condition is provided using the quadrature numerical method.
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In this approach the parameter space is discretized and the expectation in the objective

functional is approximated using a quadrature scheme, resulting in a sequence of approx-

imating standard optimal control problems. Because these problems have a Bolza-type

objective functional, they can be dualized using the Hamiltonian and adjoint variables

of Pontryagin’s minimum principle. We demonstrate convergence properties of this se-

quence of dual problems by analyzing the convergence of the approximate Hamiltonians

and adjoint variables. This analysis provides a Pontryagin-like Hamiltonian minimiza-

tion property for optimal solutions for the original problem which are accumulation

points of a sequence optimal solutions to the approximation problem. This condition

can be used for verification of numerical solutions for the uncertain problem which are

calculated using the proposed quadrature framework.

In addition, we use the approach of Polak [61] to develop a necessary condition

based on the L2-Frechet derivative of the objective functional, as well related conver-

gence results. The necessary condition is given in the form of an optimality function,

which is a nonpositive upper semicontinuous function which must be zero when evalu-

ated at any optimal solution. A decision variable which satisfies this necessary condition

is called stationary. We demonstrate that the sample average approximation scheme will

produce a sequence of approximate optimality functions which are epiconvergent, which

implies that an accumulation point of a sequence of approximately stationary points is

stationary. We therefore demonstrate that the scheme based on sample average approx-

imations is consistent in the sense of Polak [61, Section 3.3].
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1.4 Outline

The dissertation is organized as follows. Chapter 2 introduces preliminary

mathematical concepts and tools which are used to establish the main results of the

dissertation. Chapter 3 introduces an uncertain optimal control problem in which the

uncertainty occurs only in the objective functional as well a quadrature based numerical

method and necessary conditions for this problem. The results are also extended to

problems with uncertain parameters in the dynamics and initial conditions in Section

3.6 of this Chapter. Chapter 4 provides a numerical method for the uncertain optimal

control problem based on sample averages, as well as a necessary condition based on

the L2-Frechet derivative of the objective functional. Chapter 5 provides concluding

remarks for the dissertation as well as comments on future research.
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Chapter 2

Preliminary Mathematical Concepts and

Tools

In this chapter we review concepts and mathematical tools which are essential

in establishing the main results of this work. The focus of this dissertation is the

development of a computational framework for the numerical solution of optimal control

problems with stochastic parameters, therefore in this chapter we hope to familiarize

the reader with recent work in the fields of computational optimal control and stochastic

optimization.

Section 2.1 introduces Pontryagin’s minimum principle, a set of necessary con-

ditions for nonlinear optimal control problems which can be used to verify and validate

numerically computed solutions, or alternatively to demonstrate the validity of a nu-

merical algorithm for solving optimal control problems. Section 2.2 introduces the class

of direct computational optimal control methods, wherein the continuous-time control
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problem is approximated by a discretized high-dimensional constrained nonlinear opti-

mization problem. Section 2.3 discusses Polak’s theory of consistent approximations for

optimal control problems [61], which uses tools from variational analysis to demonstrate

the validity of a class of direct methods for optimal control. Section 2.4 introduces sam-

ple average approximations, a method which can be used to approximate optimization

problems with stochastic parameters using Monte Carlo integration techniques.

2.1 Optimal Control and Pontryagin’s Minimum Principle

In this section we introduce the standard nonlinear optimal control problem

as well as Pontryagin’s Minimum Principle, a theoretical result which is the underlying

basis of a number of algorithms for the solution of this problem. The goal in the

standard nonlinear optimal control problem is to find, among all admissible state-and-

control pairs for a dynamical systems, the pair which will achieve the minimum of a

predetermined cost functional. A state-and-control pair is said to be admissable if it

satisfies the dynamical system as well as a set of pointwise inequality constraints on

the control. In this work we consider systems in which both the dynamical system and

inequality contraints may be nonlinear. A standard optimal control problem can be

stated as follows:

Find a state-control pair (x, u) to minimize the objective functional

J(x, u) = F (x(T )) +

∫ T

0
r(x(t), u(t))dt, (2.1)

25



subject to the dynamical system

ẋ(t) =f(x(t), u(t)), x(0) = x0, (2.2)

and the control constraint

g(u(t)) ≤ 0 for all t ∈ [0, T ]. (2.3)

Here x : [0, T ] 7→ Rnx , u : [0, T ] 7→ Rnu , F : Rnx → R, r : Rnx × Rnu → R, and

f : Rnx × Rnu 7→ Rnx .

The form of the objective functional (2.1), which consists of both an end-

point cost and a running cost, is referred to as a Bolza type cost functional. Note

that it is possible for an optimal control problem to have state dependent constraints,

for example, pure state constraint p(x(t)) ≤ 0 for all t ∈ [0, T ], or mixed state-control

constraints, h(x(t), u(t)) ≤ 0 for all t ∈ [0, T ]. In this thesis, we limit our discussion on

control constraint only.

For the considered constrained optimal control problem, the celebrated Pon-

tryagin’s Minimum Principle provides a set of necessary condition for the optimal solu-

tion. Under mild regularity conditions, Pontryagin [63] proved that every local optimal

solution (x∗(t), u∗(t)) associates to a costate (dual) variable, λ(t). The primal opti-

mal solution, (x∗(t), u∗(t)), and the dual variable, λ(t), satisfy a differential-algebraic

equation with certain boundary conditions called transversality conditions. For the

considered control-constrained optimal control problem, the necessary conditions are

summarized in the following.
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Proposition 2.1.1. Pontryagin’s Minimum Principle [63]

Let (x∗, u∗) be an optimal solution to the problem defined by (2.1-2.3). Then there

exists an absolutely continuous costate variable λ : [0, 1] 7→ Rx and Hamitonian H :

Rnx × Rnx 7→ R such that the following are satisfied:

H(x, λ, u) =f(x, u)Tλ+ r(x(t), u(t)),

ẋ =
∂H

∂λ
, x(0) = x0,

λ̇ =− ∂H

∂x
, λ(1) = Fx(x(T )).

Furthermore u∗ satisfies the Hamiltonian minimization condition

u∗(t) ∈ arg min
g(u)≤0

H(x∗, λ∗, u) for almost every t ∈ [0, T ].

For some simple optimal control problems, for example, linear quadratic prob-

lems, the state-adjoint system for x and λ lends itself to a straightforward solution

when the Hamiltonian minimization criterion is applied. In these cases the necessary

condition provides a tool to determine a closed-form solution to the problem. However,

for most nonlinear or constrained optimal control problems, the closed form solution to

the necessary conditions cannot be analytically obtained; and numerical algorithms are

needed to compute the optimal solutions.

2.2 Computational Optimal Control

It is well-known that an optimal control problem can be very difficult to solve

analytically when the dynamics associated with the system to be controlled are nonlinear
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[11,12]. When the boundary value problem provided by Pontryagin’s minimum principle

does not admit a closed form solution, it may be possible to compute a numerical

solution using an existing discretization technique for the solution of ordinary differential

equation. The resulting approximate solution to the dual problem (necessary conditions)

will converge as the number of nodes used in the discretization increases. This process

of dualization and discretization of the optimal control problem is referred to as an

indirect method for the numerical solution an optimal control problem and has been

used successfully to solve control problems from a wide range of application areas.

However, indirect methods for optimal control pose several computational difficulties.

First, the dualization step in this process may be very labor intensive and must be

performed by an individual knowledgeable in the field of optimal control. Second, the

boundary value problem resulting from the dualization step is extremely sensitive to

the initial guess for the optimal control.

In the last decades, great progress has been made in the development of a class

computational algorithms for constrained nonlinear optimal control problems which are

based on the direct discretization of the time domain. These so-called direct methods

avoid the numerical instability inherent in indirect schemes, and in addition do not

require the user to explicitly determine the state-adjoint equations for the control prob-

lem. Instead, the direct scheme uses quadrature to approximate the objective functional

and collocation to approximate the dynamics for the new discretized time variable. The

result is a high-dimensional nonlinear programming problem which can be solved using

existing techniques. A variety of computational algorithms have been developed based
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on direct methods, using discretization schemes including Euler [61], Chapter 4, Runge-

Kutta [41, 79], and Pseudospectral [29, 42, 69]. These computational optimal control

methods have achieved great success in many areas of control applications [7,13,40,54].

To demonstrate such a direct discretization method, consider the Euler scheme,

in which the problem is discretized by selecting N number of nodes in the time domain.

For simplicity, the nodes are assumed to be uniformly distributed; and the dimensions

of the state and control are assumed to be 1, i.e., nx = nu = 1. The state trajectory

x(t) is approximated by the vector xN = (xN1 , x
N
2 , . . . x

N
N ) ∈ RN and the control u(t) is

approximated by the vector uN = (uN1 , . . . , u
N
N ) ∈ RN . Here (xNi , u

N
i ) are approximated

state and control at node ti, i.e., (x(ti), u(ti)) ≈ (xNi , u
N
i ).

The approximate optimal control problem is then: find (xN , uN ) ∈ RN × RN

which minimizes the objective functional

JN (xN , uN ) = F (xNN ) +
N∑
i=1

r(xNi , u
N
i )∆t, (2.4)

subject to the difference equation

xNi+1 =xNi + f(xNi , u
N
i )∆t, xN1 =x0, ∆t =

T

N
, (2.5)

and the control constraint g(uNi ) ≤ 0 for every i ∈ {1, . . . , n}.

The advantage of this approach is that the approximate problem is a non-

linear programming problem and can therefore be solved using existing methods such

as sequential quadratic programming. However, the apparent simplicity of such an

approximation scheme belies deep theoretical issues inherent in the approximation of
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optimal control problems. Indeed, it can be demonstrated that for nonlinear opti-

mal control problems, an inappropriately designed discretization scheme may not be

convergent [14]. Therefore particular care must be taken when determining a numeri-

cal scheme for solution of nonlinear optimal control problems, and any chosen scheme

must be proven to provide an appropriate approximation to the problem. For example,

Hager [31] demonstrates that a standard Runge-Kutta discretization for the numerical

solution of dynamical systems may fail to provide the correct solution when used to dis-

cretize an optimal control problem. By employing Pontryagin’s minimum principle to

analyze the convergence of the adjoint variables, he is able to demonstrate that adding

additional constraints to the coefficients used in the discretization scheme will guarantee

the convergence of the solution of the approximate problem to the optimal control.

2.3 Consistent Approximation of Optimal Control Prob-

lems

In this dissertation we draw heavily on results from Polak’s seminal text on

the consistent approximation of optimal control problems [61]. In this work, Polak

presents a theoretical framework to assess the convergence properties of discretization

schemes for optimal control problems using concepts from the field of variational anal-

ysis. In the absence of convexity, it is generally not possible to determine whether a

discretization scheme will lead to a numerical solution which is a meaningful approxi-

mation of the optimal control for the original problem. Polak introduces the concept
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of consistency, a property which guarantees that an accumulation point of a sequence

of approximately optimal solutions will be an optimal solution to the original problem.

To establish the consistency result for an approximation scheme he uses the notion of

epiconvergence, which is a natural setting to address the approximation of an objective

functional because an epiconvergent sequence preserves some properties of the inf and

arg min operators. For the purpose of this section, we will refer to the admissable set

of our optimization problem as U, the decision variables as η ∈ U, and the objective

functional as h : U 7→ R.

Definition 1. [4] Let (U, d) be a separable complete metric space. Consider the se-

quence of lower semi-continuous functions hM : U 7→ R. We say that hM epiconverges

to h, denoted hM →epi h, if and only if

i) lim inf hM (ηM ) ≥ h(η) whenever ηM → η,

ii) limhM (ηM ) = h(η) for at least one sequence ηM → η

The following proposition demonstrates that a numerical scheme which pro-

vides an epiconvergent sequence of approximate objective functionals is appropriate to

solve a nonlinear optimization problem.

Proposition 2.3.1. [4, Theorem 2.5] Theorem 2.5. Let (U, d) be a separable complete

metric space. Consider the sequence of lower semi-continuous functions hM : U 7→ R.

Suppose that hM epiconverges to h. If {ηM}M∈N ⊂ U is a sequence of global minimizers

to hM , and η̂ is any accumulation point of this sequence (along a subsequence indexed

31



by a set K ⊂ N), then η̂ is a global minimizer of h and limM∈K infη∈U hM (ηM ) =

infη∈U h(η).

Proposition 2.3.1 can be used to show that the Euler scheme defined by (2.4)-

(2.5) can be used to determine the optimal solution of the optimal control problem

(2.1)-(2.3). By evaluating the epiconvergence of the approximate objective functional

(2.4) it can be shown an appropriate method of solution of the original optimal control

problem is to solve the approximate problem with N nodes and analyze the convergence

properties of the sequence {u∗N}∞N=1 of approximate optimal controls. If a sequence of

approximately optimal controls {u∗N}∞N=1 converges to a control u∞, then u∞ is known

to be an optimal solution of the original optimal control problem.

An additional component of Polak’s theory of consistent approximations is

the development of a necessary condition and analysis of its convergence properties as

the number N of nodes used in the approximation approaches infinity. He presents an

alternative necessary condition to Pontryagin’s minimum principle based on optimality

functions derived using the L2-Frechet derivative of the objective functional.

Definition 2. [61] Consider the problem of finding η ∈ U to minimize the objective

functional h : U 7→ R. An upper semi-continuous function θ : U 7→ R is an optimality

function for this problem if:

i) θ(η) ≤ 0 for all η ∈ U.

ii) If η is a local minimizer of B, then θ(η) = 0.
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A point that satisfies θ(η) = 0 is called a stationary point of the optimality

function, and it is clear from this definition that every optimal solution to this problem

must be stationary. An approximation is called consistent if it approximates both the

objective functional and optimality function well.

Definition 3. [61] Let U be a complete separable metric space, let hM : U 7→ R, h :

X 7→ R be lower semi-continuous functions, and let θM : U 7→ R, θ : U 7→ R be

non-positive upper semi-continuous functions. We say that the pair {hM , θM}M∈N is a

consistent approximation to the pair {h, θ} if:

i) hM →epi h.

ii) If {ηM}∞M=1 is a sequence converging to η, then lim supM→∞ θM (ηM ) ≤ θ(η).

Note that the convergence property in Definition 6.ii guarantees that in a con-

sistent approximation, an accumulation point of a sequence of approximately stationary

points will be a stationary point of the original problem.

2.4 Sample Average Approximations

Sample average approximation is a technique for the solution of an optimiza-

tion problem in which the goal is to minimize the expectation of a predetermined cost

functional over a space of stochastic parameters. Consider the problem of finding a

decision variable η ∈ U which minimizes the objective functional EP [h(η, ω)], where

(Ω, P,Σ) is a probability space and h : U×Ω 7→ R. The sample average approach is to

33



take an independent P -distributed draw {ωMi }Mi=1 from Ω and approximate the objec-

tive functional EP [h(·, ω)] by the sample average 1
M

∑M
i=1 h(·, ωMi ). For a treatment of

sample average approximation techniques for problems with finite dimensional decision

spaces, see Ref. [81].

While the strong law of large numbers guarantees the almost sure convergence

of the approximate objective values for a fixed decision variable, this does not guarantee

convergence of the sequence of approximate problems. Ref. [3,5] provide an extension of

the strong law of large numbers to random lower semincontiuous functions which can be

used to determine the convergence properties of the sequence of approximate objective

functionals. This allows the consistency properties of the approximation scheme to be

analyzed using Polak’s theory of consistent approximations [61], discussed in Section

2.3.

Definition 4. [5] Let (U, d) be a separable complete metric space with B the Borel field

generated by the open subsets of U. Let P be a probability measure on the measurable

space (Ω,Σ) such that Σ is P -complete. A function h : U × Ω 7→ R is a random lower

semi-continuous if and only if:

i) for all ω ∈ Ω, the function η 7→ h(η, ω) is lower semi-continuous,

ii) (η, ω) 7→ h(η, ω) is B ⊗ Σ measurable.

In probability theory, the strong law of large numbers guarantees the almost

sure convergence of the sample average as the number of samples drawn approaches

infinity. The following proposition extends this result to random lower semi-continuous

34



functions.

Proposition 2.4.1. [3, Theorem 2.3] Let (Ω,Σ, P ) be a probability space such that Σ is

P -complete. Let (U, d) be a separable complete metric space. Suppose that the function

h : U×Ω 7→ R is a random lower semi-continuous function and there exists an integrable

function a0 : Ω 7→ R such that h(η, ω) ≥ a0(ω) almost surely. Let {ω1, . . . , ωM} be an

independent P -distributed random draw and define

ĥ(η, ω1, . . . , ωM ) =
1

M

M∑
i=1

h(η, ωi).

Then, as M →∞, ĥ(x, ω1, . . . , ωM ) epiconverges almost surely to EP [h(η, ω)].

This result, combined with the theory of consistent approximations introduced

in Section 2.3, is used evaluate the validity of a sample average scheme for optimal

control by demonstrating the epiconvergence of the objective functionals and optimality

functions in Chapter 4.
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Chapter 3

Quadrature Approximation of an

Uncertain Optimal Control Problem

In this chapter we introduce a class of optimal control problems which incor-

porate parameter uncertainty into the cost in the form of an expectation over a space of

stochastic parameters in the objective functional. These problems may be encountered

in applications from optimal search for moving targets [22, 23, 51, 52]. We consider a

class of algorithms for the numerical solution of these problems based on a quadra-

ture approximation of the expectation in the objective functional. In this approach,

a set of nodes and weights are chosen from the parameter space, and the expectation

is approximated by a finite sum. The advantage of this method is that the resulting

approximate problem is a standard optimal control problem which can be solved using

existing techniques [29, 41, 79]. Our goal is to provide a rigorous analysis of the con-

vergence properties of these algorithms as well as necessary conditions which must be
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satisfied by the solutions.

Some aspects of this analysis have been carried out in special cases. Ref. [22,23]

uses a composite-Simpson integration scheme to discretize a two-dimensional parameter

space and develops a computational method for solving a reduced version of this class

of problems. They also analyze the performance of the computational method using

Polak’s consistent approximation theory [61], Section 3.3. In this chapter we extend

these results by demonstrating that any convergent quadrature scheme will produce an

approximation of the uncertain optimal control problem which is consistent in the sense

of Polak [61]. Establishing this property for a variety of quadrature schemes is important

because the convergence properties of the state variables depend on the collocation

nodes chosen for the parameter space [6]. In addition, we provide a Pontryagin-like

necessary condition which must be satisfied by an optimal solution computed by the

given numerical method. We contrast this work to consistency and convergence results

on standard optimal control problems, for example results in Ref. [29,41,42,61], as the

discretization in this work occurs in the parameter space rather than the time domain.

Although we focus in this chapter on a class of problems in which the un-

certainty occurs only in the objective functional, this approach can be extended to

problems with uncertainty in the agent dynamics and initial state. An analysis of such

an extension is given in Section 3.6.
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3.1 Formulation of the Uncertain Optimal Control Prob-

lem

In a standard nonlinear optimal control problem, the objective functional is

of the Bolza type, which consists of an end cost as well as an integral over the time

domain. In this section we introduce a class of non-standard optimal control problems

in which the objective functional involves an expectation of a Bolza-type integral over

a space of stochastic parameters:

Problem B. Determine the function pair {x, u} with x ∈ W1,∞([0, 1];Rnx), u ∈

L∞([0, 1];Rnu) that minimizes the cost functional

J =

∫
Ω

[
F (x(1), ω) +G

( ∫ 1

0
r(x(t), u(t), t, ω)dt

)]
p(ω)dω

subject to the dynamics

ẋ(t) = f(x(t), u(t)), (3.1)

initial condition x(0) = x0, and the control constraint g(u(t)) ≤ 0 for all t ∈ [0, 1].

In Problem B, W1,∞([0, 1];Rnx) is the space of all essentially bounded functions

with essentially bounded distributional derivatives, which map the interval [0, 1] into

the space Rnx , and L∞([0, 1];Rnu) is the set of all essentially bounded functions. The

function p is a continuous probability density function for the stochastic parameter

ω ∈ Ω ⊂ Rnω and we allow r to be vector valued: that is, r : Rnx × Rnu × R1 × Rnω 7→

RK , G : RK 7→ R.

Given the difficulty in solving standard nonlinear optimal control problems,
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it is not surprising that the inclusion of the expectation of the cost functional over

the parameter space, combined with the nonlinear dynamics and control constraints,

makes Problem B particularly challenging. In this work we propose a computational

framework for the solution of the uncertain optimal control Problem B. Based on the

numerical approximation of the integral over the stochastic parameters in the objective

functional, the considered uncertain optimal control problem can be approximated by

a sequence of standard nonlinear optimal control problems, which can in turn be solved

using existing computational methods such as Runge-Kutta [41,79] and pseudospectral

[29] approaches. To ensure meaningful results in this computational framework, it

is essential to guarantee that the discretization schemes provide valid approximations

to the original non-standard optimal control Problem B. Indeed, even for standard

optimal control problems, there are counterexamples showing that an inappropriately

designed discretization may not be convergent [14]. In this chapter, we show that

the proposed computational framework approximates the optimal solution to the non-

standard optimal control problem under mild assumptions. In particular, we show in

Section 3.3 that the approximation based on the discretization process satisfies a zeroth-

order consistency property. That is, accumulation points of a sequence of optimal

solutions to the approximate problem are optimal solutions to the original uncertain

optimal control problem.
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3.2 Discretization of the Uncertain Optimal Control Prob-

lem

In this section we present a computational framework for solving the non-

standard optimal control Problem B by using a numerical scheme to approximate the

integral over the stochastic parameters in the objective functional. The following regu-

larity conditions are assumed.

Assumption 1. The function g : Rnu 7→ Rng used in the definition of the control

constraint is continuous and the set U = {ν ∈ Rnu |g(ν) ≤ 0} is compact.

In a real world scenario the set of allowable controls will be bounded and

therefore U , being a closed and bounded set, will be compact.

Assumption 2. Let A be the set of feasible pairs to Problem B, that is the set of all

{x, u} with x ∈ W1,∞([0, 1];Rnx), u ∈ L∞([0, 1];Rnu) such that u(t) ∈ U and x(t) =

x0 +
∫ t

0 f(x(s), u(s))ds for all t ∈ [0, 1]. Then there exists a compact set X ⊂ Rnx such

that for each feasible pair {x, u} ∈ A we have x(t) ∈ X for all t ∈ [0, 1].

This assumption essentially requires for all bounded controls that there is

no finite escape time. A large class of nonlinear systems satisfy this assumption, for

example, input-to-state stable systems and systems for which f is globally Lipschitz or

satisfies a linear growth condition.

Assumption 3. The functions f , r and G are C1. The set Ω is compact. Moreover,

for the compact sets X and U defined in Assumptions 1-2 and for each t ∈ [0, 1], ω ∈ Ω,
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the Jacobian rx(·, ·, t, ω) is Lipschitz on the set X ×U , and the corresponding Lipschitz

constant is uniformly bounded in ω and t. The function F (·, ω) is C1 on X for all

ω ∈ Ω; in addition, F and ∇xF are continuous with respect to ω.

To approximate the integral over the stochastic parameters in the objective

functional in Problem B, we introduce numerical integration schemes that satisfy the

following assumption.

Assumption 4. For each M ∈ N, there is a set of nodes {ωMi }Mi=1 ⊂ Ω and an associ-

ated set of weights {αMi }Mi=1 ⊂ R, such that for any continuous function h : Ω→ R,

∫
Ω
h(ω)dω = lim

M→∞

M∑
i=1

h(ωMi )αMi .

Throughout this chapter, M is used to denote the number of nodes used in

the numerical integration scheme. Many numerical integration schemes, e.g., numerical

quadrature and Simpson’s rule, satisfy Assumption 8 and are applicable to determine

the nodes and weights.

Remark 1. Note that if hM : Ω→ R is continuous for all M ∈ N and {hM} converges

uniformly to h, then

∫
Ω
h(ω)dω = lim

M→∞

M∑
i=1

hM (ωMi )αMi .

This property is frequently used later.

Once the numerical scheme is chosen, the integral over the parameter space is

approximated by a sum; and an approximate objective functional for each M ∈ N can
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be defined by

JM =
M∑
i=1

[
F
(
x(1), ωMi

)
+G

(∫ 1

0
r(x, u, t, ωMi )dt

)]
p(ωMi )αMi . (3.2)

Now we are ready to define the approximate optimal control problem:

Problem BM. Determine the function pair {x, u}, where x ∈ W1,∞([0, 1];Rnx), and

u ∈ L∞([0, 1];Rnu), that minimizes the cost functional (3.2) subject to the dynamics

(3.1) and the control constraint g(u(t)) ≤ 0 for all t ∈ [0, 1].

We now show that Problem BM can be reformulated as a standard optimal

control problem with a Bolza form objective functional. To this end we introduce the

auxiliary variable z : [0, 1]× Ω 7→ R governed by the dynamics

ż(t, ω) = r(x(t), u(t), t, ω), z(0, ω) = 0, ∀ ω ∈ Ω. (3.3)

So that z(1, ω) =
∫ 1

0 r(x(t), u(t), t, ω)dt. By forming the vector

ζM (t) = [z(t, ωM1 ), . . . , z(t, ωMM )]T ,

we can reformulate the objective functional (3.2) as:

ĴM =
M∑
i=1

[
F
(
x(1), ωMi

)
+G(ζM,i(1))

]
p(ωMi )αMi . (3.4)

This is a Bolza objective functional with an end cost. Therefore Problem BM is equiv-

alent to the standard optimal control problem of finding a triplet {x, ζM , u} which

minimizes the objective functional (3.4) subject to the dynamics

ẋ(t) =f(x(t), u(t))

ζ̇M,i(t) =r(x(t), u(t), t, ωMi ), i = 1, . . .M

42



initial condition x(0) = x0, ζM,i(0) = 0, and the control constraint g(u(t)) ≤ 0 for

all t ∈ [0, 1]. This formulation is used again when deriving a necessary condition for

Problem B.

By using a numerical scheme to approximate the integral in the objective

functional, the non-standard optimal control Problem B is discretized into a sequence of

standard optimal control problems, ProblemBM . ProblemBM can be solved by existing

computational optimal control methods, such as Runge-Kutta [41, 79], pseudospectral

[29] methods, and indirect [8, 12] type of methods.

3.3 Convergence Properties of The Discretized Problem

It is well known in computational optimal control that a convergent numerical

scheme for solving ODEs may be divergent when applied to optimal control problems [14,

29,61]. Similarly, the convergence of the numerical integration assumed in Assumption

8 does not necessarily imply solutions of Problem BM converge to solutions of the

original Problem B. The focus of this section is to show that, under Assumptions 1 –

4, accumulation points of a sequence of optimal solutions to the approximate Problem

BM as the number of nodes M tends to infinity, are optimal solutions to Problem

B. This consistency property guarantees that Problem BM is indeed an appropriate

approximation to Problem B.

Before introducing the main convergence result, we first make a note on the

notation to be used. We define the set N#
∞ = {V ⊂ N|V infinite}. That is, N#

∞ is the set
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of all subsequences of N of infinite length, which are designated by the index set V ∈ N.

When M → ∞ as usual in N, we write limM→∞. However, in the case of convergence

with respect to a subsequence designated by an index set V , we write limM∈V . For se-

quences of feasible pairs {xM , uM}, the notation limM→∞{xM , uM} = {x, u} will mean

that {xM , uM} converges pointwise to {x, u}. Similarly limM∈V {xM , uM} = {x, u} will

refer to pointwise convergence of the state-control pair along the subsequence indexed

by V .

Lemma 3.3.1. Suppose that Assumptions 1-3 hold. Then A, the set of feasible pairs to

Problem B defined in Assumption 2, is closed in the topology of pointwise convergence.

Proof. Suppose that a sequence {xM , uM} ⊂ A and limM→∞{xM , uM} = {x, u}. By

the continuity of g, u(t) ∈ U for all t ∈ [0, 1]. Note that because f is C1, it is Lipschitz

continuous on the compact set X × U . Now consider∥∥∥∥x(t)− x0 −
∫ t

0
f(x(s), u(s))ds

∥∥∥∥ = lim
M→∞

∥∥∥∥x(t)−
∫ t

0
f(x(s), u(s))ds− xM (t)

+

∫ t

0
f(xM (s), uM (s))ds

∥∥∥∥
≤ lim
M→∞

L

∫ t

0
‖x(s)− xM (s)‖+ ‖u(s)− uM (s)‖ ds

+ ‖x(t)− xM (t)‖ ,

where L is the Lipschitz constant of f . Because x(s), xM (s) ∈ X and u(s), uM (s) ∈ U ,

where X and U are compact, ‖x(s) − xM (s)‖ and ‖u(s) − uM (s)‖ are bounded for all

s ∈ [0, 1] and M ∈ N. Therefore by the dominated convergence theorem,

x(t) = x0 +

∫ t

0
f(x(s), u(s))ds
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for all t ∈ [0, 1]. Hence, {x, u} ∈ A.

Lemma 3.3.1 shows that if {xM , uM} is a sequence of feasible pairs for Problem

B, then any accumulation point of this sequence is a feasible pair. It sets the foundation

for the following result.

Theorem 3.3.2. Suppose that Assumptions 1-8 hold. In addition, suppose that there

exists V ∈ N#
∞ and a set of optimal pairs {x∗M , u∗M}M∈V for Problem BM such that

lim
M∈V
{x∗M , u∗M} = {x∞, u∞}.

Then {x∞, u∞} is an optimal solution to Problem B.

Proof. By Lemma 3.3.1, {x∞, u∞} is a feasible solution to Problem B. Next, we prove

the optimality of {x∞, u∞}. From Assumption 3, r is bounded and Lipschitz on X ×

U × [0, 1] × Ω and G is uniformly continuous on r(X,U, [0, 1],Ω). From the Lipschitz

continuity of r, we have, for all ω ∈ Ω

∫ 1

0
‖r(x∗M (t), u∗M (t), t, ω)− r(x∞(t), u∞(t), t, ω)‖dt

≤ L

∫ 1

0
‖x∗M (t)− x∞(t)‖+ ‖u∗M (t)− u∞(t)‖dt.

By the dominated convergence theorem,

lim
M∈V

∫ 1

0
‖x∗M (t)− x∞(t)‖+ ‖u∗M (t)− u∞(t)‖ dt = 0

and this convergence must be uniform in ω. Then by the uniform continuity of G and

the continuity of F , for each ε > 0, there must exist N ∈ N such that for each M ∈ V
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with M > N the following statements hold for all ω ∈ Ω

∥∥∥∥G(∫ 1

0
r(x∗M (t), u∗M (t), t, ω)dt

)
−G

(∫ 1

0
r(x∞(t), u∞(t), t, ω)dt

)∥∥∥∥ <ε2 ,
‖F (x∗M (1), ω)− F (x∞(1), ω)‖ <ε

2
.

This implies, by the statement in Remark 1,

lim
M∈V

JM (x∗M , u
∗
M ) = J(x∞, u∞).

Let {x, u} be an arbitrary feasible pair for Problem B. Then, based on the optimality

of {x∗M , u∗M}, JM (x∗M , u
∗
M ) ≤ JM (x, u) for all M ∈ V . Thus

J(x∞, u∞) = lim
M∈V

JM (x∗M , u
∗
M ) ≤ lim

M∈V
JM (x, u) = J(x, u).

Therefore {x∞, u∞} is an optimal pair for Problem B, since it produces the minimum

cost among all feasible solutions.

Theorem 3.3.2 shows that if a subsequence of optimal solutions to Problem

BM converges, this limit point is an optimal solution to Problem B. Based on Theorem

3.3.2, one can apply existing computational optimal control algorithms to solve Problem

BM . If the solution sequence is observed to be convergent as M increases, then its limit

point is an optimal solution to the original non-standard optimal control Problem B.

Remark 2. We refer to an approximation in which accumulation points of a sequence

of optimal solutions to the approximate problem are optimal solutions to the original

problem as a zeroth order consistent approximation. We contrast this condition to that

of Polak [61], Section 3.3, which in addition requires a condition on stationary points.
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We note that the consistency property in Theorem 3.3.2 differs from the consistency

results in Ref. [29, 41, 42, 61] because the discretization occurs in the parameter space

instead of the time domain. This results in a sequence of standard optimal control

problems which can be further approximated using existing time discretization schemes

[29, 41, 79].

Note that Theorem 3.3.2 does not ensure the existence of an accumulation

point. However, using a generalized Helly’s Selection Theorem from Ref. [19], we can

guarantee the existence of a convergent subsequence for a certain class of controls.

Definition 5. [19] Let (Y, d) be a metric space and h : [0, 1] 7→ Y . A function h is

of bounded variation if there exists B > 0 such that for any partition π, 0 ≤ t0 < t1 <

. . . < tn < tn+1 ≤ 1, we have
∑n

i=0 d(h(ti+1, h(ti)) < B. The variation of h is defined

as

Vh = sup
π

n∑
i=0

d(h(ti+1), h(ti))

We say family H of functions is of uniformly bounded variation if there exists a C > 0

such that for each h ∈ H, we have h : [0, 1] 7→ Y and Vh < C.

Corollary 3.3.3. Suppose Assumptions 1-8 hold, and in addition there exists V ∈ N#
∞

and a set of optimal solutions {x∗M , u∗M}M∈V to Problem BM , such that {u∗M}M∈V have

uniformly bounded variation. Then there exists V ′ ⊆ V such that limM∈V ′{x∗M , u∗M} =

{x∞, u∞} for some {x∞, u∞} ∈ A.

Sketch of Proof: Because ẋ = f(x, u) and f is bounded on X × U , {x∗M}M∈V is

of uniformly bounded variation on X. Therefore {x∗M , u∗M} is of uniformly bounded
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variation on X × U . Furthermore, {x∗M (t), u∗M (t)}M∈V is relatively compact, as it is a

subset of a compact space. Therefore by the generalization of Helly’s Selection Theorem

[19], there exists a V ′ ⊂ V such that limM∈V ′{x∗M , u∗M} = {x∞, u∞} .

It is known that for constrained optimal control problems, the optimal control

often belongs to the class of bang-bang controllers, and are piecewise differentiable. If

the first derivatives and number of jump discontinuities are bounded, the controls will

satisfy the hypothesis in Corollary 3.3.3. Therefore the existence of an accumulation

point of optimal pairs to Problem BM can be guaranteed in this case. From Theorem

3.3.2, it is known that this accumulation point is an optimal pair to Problem B.

Remark 3. The reader may notice that we have used pointwise convergence of the state

and control to establish the optimality result instead of a weaker condition such as Lp

convergence. The result of Theorem 3.3.2 can be established using the L1 convergence of

the state and control, therefore it will hold under this weaker assumption. However, in

this work we focus on the stronger condition of pointwise convergence, as it is necessary

to establish the Hamiltonian minimization condition considered in Section 3.4.

Example 1. We demonstrate the convergence properties on a simplified uncertain

optimal control problem for which an analytic optimal solution can be derived. Consider

the problem of minimizing the cost functional

J =

∫
Ω

(∫ 1

0

K∑
k=1

[
(xk(t)− ωk)2 + u2

k(t)
]
dt
)
p(ω)dω,

where ωT = [ω1, . . . , ωK ]T with ωk, k = 1, 2, . . . ,K, be independent random variables

with joint distribution p(ω), subject to dynamics ẋk(t) = uk(t), and initial condition
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xk(0) = 0, k = 1, 2, . . . ,K. In optimal search context, this objective function can

represent the K-dimensional distance to a stationary target at position (ω1, ω2, . . . , ωK)

with a penalty function u2
k(t) intended to keep the control within reasonable bounds.

For parameter ωk, we can assign a set of nodes {ωMk,i}Mi=1 and weights {αMk,i}Mi=1

to approximate the integral over the parameter space based on any numerical integra-

tion scheme that satisfies Assumption 8. Remember that the random variables ωk are

independently distributed. We define pk to be the corresponding probability densities,

and introduce the following notations

cMk =

M∑
i=1

pk(ω
M
k,i)α

M
k,i, c

M
−k =

∏
j 6=k

cMj , c
M =

∏
k

cMk .

Using these notations, the discretized uncertain optimal control Problem BM can be

written as: minimizing

K∑
k=1

cM−k

M∑
i=1

[ ∫ 1

0
(xk(t)− ωMk,i)2 + u2

k(t)dt
]
pk(ω

M
k,i)α

M
k,i

subject to ẋk(t) = uk(t), xk(0) = 0, k = 1, 2, . . . ,K. This is a standard quadratic

linear optimal control problem, which can be solving analytically using the Pontryagin

Minimum Principle. The closed-form optimal trajectory and control are given by

x∗k,M (t) =
1

cM

M∑
i=1

ωMk,ipk(ω
M
k,i)α

M
k,i

(
1− et + e2−t

1 + e2

)
u∗k,M(t) = − 1

cM

M∑
i=1

ωMk,ipk(ω
M
k,i)α

M
k,i

et − e2−t

1 + e2
.

From the definition of cMk , cM−k and the convergence of the numerical scheme, we have
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limM→∞ c
M
k = limM→∞ c

M
−k = limM→∞ c

M = 1, and

lim
M→∞

M∑
i=1

ωMk,ipk(ω
M
k,i)α

M
k,i = ωk,

where ωk =
∫

Ω ωkp(ω)dω. Therefore, the optimal solution of ProblemBM , {x∗k,M , u∗k,M},

has a limit point as M →∞, given by

x∗k(t) = lim
M→∞

x∗k,M (t) = ω̄k

(
1− et + e2−t

1 + e2

)
, (3.5)

u∗k(t) = lim
M→∞

u∗k,M (t) = −ω̄k
et − e2−t

1 + e2
. (3.6)

According to Theorem 3.3.2, it can be concluded that x∗k is the optimal trajectory for

the considered non-standard optimal control problem and u∗k is the corresponding opti-

mal control. In this example, because the solution to the approximate optimal control

Problem BM can be given in closed form, it is possible to demonstrate the pointwise

convergence of the approximate state and control. In scenarios where the approximate

optimal control problem cannot be solved analytically, the pointwise convergence prop-

erty required in Theorem 3.3.2 can be verified numerically.

3.4 Convergence in the Adjoint Variables

In this section we analyze the convergence of the adjoint variables and Hamil-

tonian of Problem BM and provide a necessary condition which is satisfied by accumu-

lation points of a sequence of optimal solutions. In Section 4.1 we showed that by intro-

ducing an auxiliary vector ζM (t) = [z(t, ωM1 ), . . . , z(t, ωMM )]T , where z is given by (3.3),

Problem BM can be reformulated as a standard optimal control problem with a Bolza
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cost. It therefore admits the Hamiltonian HM : Rnx×Rnx×RM×RM×Rnu× [0, 1] 7→ R

given by

HM (x, λ, ζM , ηM , u, t) =ẋTλ+ [ζ̇M ]T ηM

=
[
f(x, u)

]T
λ+

M∑
i=1

[
r
(
x, u, t, ωMi

) ]T
ηM,i, (3.7)

where λ and ηM are the adjoint variables (costates) corresponding to x and ζM respec-

tively. By Pontryagin Minimum Principle [33], if {x∗M , u∗M} is an optimal solution to

Problem BM , then there exist absolutely continuous costates λ∗M and η∗M such that the

following conditions hold for almost every t ∈ [0, 1]:

u∗M (t) ∈ arg min
u∈U

HM
(
x∗M (t), λ∗M (t), ζ∗M (t), η∗M (t), u, t

)
,

λ̇∗M (t) = −∂HM

∂x∗M

(
x∗M (t), λ∗M (t), ζ∗M (t), η∗M (t), u∗M (t), t

)
,

η̇∗M (t) = −∂HM

∂ζ∗M

(
x∗M (t), λ∗M (t), ζ∗M (t), η∗M (t), u∗M (t), t

)
.

Moreover, the costates satisfy the transversality conditions

λ∗M (1) =
∂ĴM

∂x

(
x∗M (1), ζ∗M (1)

)
,

η∗M (1) =
∂ĴM

∂ζM

(
x∗M (1), ζ∗M (1)

)
. (3.8)

Note that the Hamiltonian (3.7) and adjoint equation of η∗M lead to

η̇∗M = −HM

∂ζ∗M
= 0.

Therefore, for all t ∈ [0, 1], we have η∗M,i(t) = η∗M,i(1). Thus, from the transversality

condition (3.8) and the objective function (3.4), we have, for i = 1, . . .M ,

η∗M,i(t) = ∇G
(
ζ∗M,i(1)

)
p(ωMi )αMi . (3.9)
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The value, ζM,i(1), is given by

ζM,i(1) = z(1, ωMi ) =

∫ 1

0
r(x(t), u(t), t, ωMi )dt.

Let Z be the set of all functions from [0, 1] × Ω → RK . We can therefore define an

equivalent form of the Hamiltonian, from (3.7) and (3.9), so that H̄M : Rnx × Rnx ×

Rnu × Z × [0, 1] is given by

H̄M (x, λ, u, z, t) =
[
f(x, u)

]T
λ+

M∑
i=1

r(x, u, t, ωMi )∇G
(
z(1, ωMi )

)
p(ωMi )αMi . (3.10)

From this form of the Hamiltonian and the costate dynamics we get the following adjoint

equation for λ∗M

λ̇∗M (t) =− [fx(x∗M (t), u∗M (t))]T λ∗M (t)

−
M∑
i=1

[
rx
(
x∗M (t), u∗M (t), t, ωMi

)]T ∇G (z∗M (1, ωMi )
)
p(ωMi )αMi , (3.11)

where z∗M is the solution to (3.3) for the optimal pair {x∗M , u∗M} and the final value is

given by the transversality condition:

λ∗M (1) =

M∑
i=1

∇xF (x∗M (1), ωMi )p(ωMi )αMi . (3.12)

Now, the necessary condition can be reformulated as:

Necessary Condition of Problem BM: Suppose that {x∗M , u∗M} is an optimal pair

for Problem BM . Then u∗M must satisfy

u∗M (t) ∈ arg min
u∈U

H̄M (x∗M (t), λ∗M (t), u, z∗M , t) (3.13)

for almost every t ∈ [0, 1], where H̄M is given by (3.10), and λ∗M is given by (3.11)-(3.12)

and z∗M is the solution to (3.3) for the pair {x∗M , u∗M}.
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We now demonstrate the convergence of the adjoint states λ∗M and Hamiltoni-

ans H̄M . For this purpose, let λ∞ be the solution of the initial value problem

λ̇∞(t) =−
∫

Ω

[
rx (x∞(t), u∞(t), t, ω)

]T∇G (z∞(1, ω)) p(ω)dω

−
[
fx(x∞(t), u∞(t))

]T
λ∞(t), (3.14)

λ∞(1) =

∫
Ω
∇xF

(
x∞(1), ω

)
p(ω)dω, (3.15)

where z∞ is the solution to (3.3) for the pair {x∞, u∞}. Furthermore, we define the

Hamiltonian of Problem B as H : Rnx × Rnx × Rnu × Z × [0, 1] such that

H(x, λ, u, z, t) = [f(x, u)]Tλ(t) +

∫
Ω

[r (x, u, t, ω)]T∇G (z(1, ω)) p(ω)dω. (3.16)

Remark 4. As opposed to the Hamiltonian used in the optimal control of distributed

parameter systems, the Hamiltonian defined in (3.16) does not explicitly depend on the

unknown parameter. This is because the optimal control of Problem B is not a function

of the unknown parameter, which is different from the distributed parameter problem.

Theorem 3.4.1. Suppose Assumptions 1-8 hold. Let V ∈ N#
∞ and let {x∗M , u∗M}M∈V

be a set of optimal solutions to Problem BM such that limM∈V {x∗M , u∗M} = {x∞, u∞}.

Let λ∗M be the solutions to (3.11)-(3.12), and λ∞ be the solution to (3.14)-(3.15). Then

for every t ∈ [0, 1]

lim
M∈V

λ∗M (t) = λ∞(t).

Moreover, for H̄M and H defined in (3.10) and (3.16),

lim
M∈V

H̄M (x∗M (t), λ∗M (t), u∗M (t), z∗M , t)

= H(x∞(t), λ∞(t), u∞(t), z∞, t).
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Proof. Define λ′M to be the solution of system (3.11) with final condition (3.15). Con-

sider the difference

λ′M (t)− λ∞(t) =

∫ 1

t
λ̇′M (s)ds−

∫ 1

t
λ̇∞(s)ds (3.17)

=

∫ 1

t

[
f∞x (s)Tλ∞(s)− fMx (s)Tλ′M (s)

]
+
[ ∫

Ω
Γ∞(t, ω)p(ω)dω −

M∑
i=1

Γ∗M (t, ωMi )p(ωMi )αMi

]
ds

where, for notational simplicity, we have defined

f∞x (t) = fx(x∞(t), u∞(s)),

fMx (t) = fx(x∗M (t), u∗M (s)),

Γ∞(t, ω) = [rx (x∞(t), u∞(t), t, ω)]T ∇G(z∞(1, ω)),

Γ∗M (t, ω) = [rx (x∗M (t), u∗M (t), t, ω)]T ∇G(z∗M (1, ω)).

By Assumption 3, fx is continuous on the compact setX×U ; therefore, fx(x∗M (t), u∗M (t))

is uniformly bounded. From (3.14) it is seen that λ∞ is the solution to a system of linear

differential equations with bounded coefficients, thus is bounded on the compact domain

[0, 1]. By the dominated convergence theorem

lim
M∈V

∫ 1

0
fMx (t)Tλ∞(t)dt =

∫ 1

0
f∞x (t)Tλ∞(t)dt.

Similarly, by Assumption 3-8 and Remark 1, it can be shown that

lim
M∈V

M∑
i=1

Γ∗M (t, ωMi )p(ωMi )αMi =

∫
Ω

Γ∞(t, ω)p(ω)dω.

From these limits, for each ε > 0, let M ′ ∈ N be such that, for every M ∈ V with
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M > M ′, ∫ 1

0
‖fMx (t)Tλ∞(t)− f∞x (t)Tλ∞(t)‖dt <ε (3.18)∫ 1

0

∥∥∥∥∥
∫

Ω
Γ∞(t, ω)p(ω)dω −

M∑
i=1

Γ∗M (t, ωMi )p(ωMi )αMi

∥∥∥∥∥ dt <ε. (3.19)

Therefore, by (3.17), (3.18), and (3.19),

∥∥λ∞(t)− λ′M (t)
∥∥ < ∫ 1

t

∥∥fMx (s)Tλ′M (s)− f∞x (s)Tλ∞(s)
∥∥ ds+ ε

≤
∫ 1

t

∥∥fMx (s)Tλ′M (s)− fMx (s)Tλ∞(s)
∥∥ ds

+

∫ 1

t

∥∥fMx (s)Tλ∞(s)− f∞x (s)Tλ∞(s)
∥∥ ds+ ε

≤
∫ 1

t

∥∥fMx (s)Tλ′M (s)− fMx (s)Tλ∞(s)
∥∥ ds+ 2ε.

Applying Gronwall’s inequality gives

‖λ∞(t)− λ′M (t)‖ ≤ 2ε

∫ 1

t
exp

∥∥fMx (s)
∥∥ ds.

The function in the integral is uniformly bounded in M , and for any ε > 0 we can find

an S such that the statement is valid for each M ∈ V,M > S, thus

lim
M∈V

λ′M (t) = λ∞(t).

Recall that the final conditions, λ∗M (1) and λ′M (1) are given by (3.12) and (3.15). By

Assumption 8 and the continuous dependence of dynamical systems on the initial con-

dition, combined with the convergences x∗M (1) → x∞(1) and λ′M (t) → λ∞(t), for each

ε > 0, t ∈ [0, 1] there exists N ∈ N such that for each M > N,M ∈ V , the following

conditions hold:

∥∥λ∗M (t)− λ′M (t)
∥∥ < ε

2
,
∥∥λ′M (t)− λ∞(t)

∥∥ < ε

2
.
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Therefore

lim
M∈V

λ∗M (t) = λ∞(t).

The proof of the convergence of the Hamiltonians follows a similar argument.

Given the convergence of the adjoint variables and Hamiltonians, we can now

show that if the solutions to Problem BM have an accumulation point, this accumulation

point must minimize the Hamiltonian for Problem B.

Theorem 3.4.2. Suppose Assumptions 1-8 hold. Let V ∈ N#
∞ and let {x∗M , u∗M} be

a sequence of optimal pairs to Problem BM such that limM∈V {x∗M , u∗M} = {x∞, u∞}.

Then there exists an absolutely continuous costate trajectory λ∞ satisfying (3.14)-(3.15)

such that the following holds for almost every t ∈ [0, 1]:

u∞(t) ∈ arg min
u∈U

H(x∞(t), λ∞(t), u, z∞, t) (3.20)

where H is given by (3.16) and z∞ is the solution to (3.3) for the pair {x∞, u∞}.

Proof. From Theorem 3.4.1, limM∈V λ
∗
M = λ∞ and

lim
M∈V

H̄M (x∗M (t), λ∗M (t), u, z∗M , t)

= H(x∞(t), λ∞(t), u, z∗M , t).

Then for any admissable u ∈ U and each t ∈ [0, 1]

H(x∞(t), λ∞(t), u∞(t), z∞, t) = lim
M∈V

H̄M (x∗M (t), λ∗M (t), u∗M (t), z∗M , t)

≤ lim
M∈V

H̄M (x∗M (t), λ∗M (t), u, z∗M , t)

=H(x∞(t), λ∞(t), u, z∞, t).
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In the previous section, Theorem 3.3.2 shows that an accumulation point of

the set of optimal pairs to Problem BM is an optimal solution of Problem B. Theorem

3.4.2 further provides necessary conditions that such an accumulation point must satisfy.

Such results can be applied to verify the optimality of the computed solution. It can

also be used to develop algorithms for Problem B by solving the necessary conditions

as demonstrated in the following example.

Revisit of Example 1. In the previous section, the analytic optimal solution of

Example 1 was obtained by an application of Theorem 3.3.2. Now we show that Theorem

3.4.2 provides an alternative way to solve this example problem. First note that in this

example, G(z) = z, so that ∇G(z(1, ω)) = 1. Then from (3.16) the Hamiltonian of this

problem is given by:

H(x(t), λ(t), z, u(t), t) = λT (t)u(t) +

K∑
k=1

(
x2
k(t) + u2

k(t)− 2xk(t)ωk + ω2
k

)
,

where ωk =
∫

Ω ωkdω, ω
2
k =

∫
Ω ω

2
kdω. Here we use the independence of the random

variables ωk to evaluate the integral over Ω. The costate, λ = [λ1, . . . , λK ]T , satisfies

adjoint equation

λ̇k(t) = −2xk(t) + 2ωk, (3.21)

λk(1) = 0, k = 1, . . . ,K.

Because the system is unconstrained, the Hamiltonian minimization condition in The-

57



orem 3.4.2 requires

∂H

∂uk
= λk(t) + 2uk(t) = 0, (3.22)

for k = 1, . . . ,K. Equation (3.21), (3.22), together with dynamics, results in a boundary

value problem  ẋk(t)

λ̇k(t)

 =

 0

2ωk

+

 0 −1
2

−2 0


 xk(t)

λk(t)

 ,
xk(0) = 0, λk(1) = 0,

that can be solved to yield the same optimal solution as shown in (3.5)-(3.6). Therefore

in this scenario, the necessary condition of Theorem 3.4.2 can be used to determine the

closed form solution to Problem B.

Similar to Corollary 3.3.3, the following result can be established to ensure the

existence of a solution satisfying the condition of Theorem 3.4.2.

Corollary 3.4.3. Suppose Assumptions 1-8 hold, and in addition there exists V ∈ N#
∞

and a set of optimal solutions {x∗M , u∗M}M∈V to Problem BM , such that {u∗M}M∈V

have uniformly bounded variation. Then there exists an optimal solution, {x∞, u∞}, to

Problem B and a costate, λ∞, satisfying condition (3.14), (3.15) and (3.20).

Proof. The corollary follows direction from Corollary 3.3.3 and Theorem 3.4.2.
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3.5 Application on Optimal Search

In this section, we apply the results of the previous sections to an optimal

search problem inspired by a real-world scenario. The example, taken from [22] and [23],

considers a surface vessel attempting to detect a hostile target with sonar. The target

travels towards a friendly ship, called the “high value unit” or “HVU.” The objective of

the problem is to find a search path that maximizes the chance of detecting the target,

before the target reaches the “HVU.”

The searcher is modeled as a Dubin’s vehicle with dynamics

ẋ1(t) = v cosx3(t),

ẋ2(t) = v sinx3(t), (3.23)

ẋ3(t) = u(t),

where (x1, x2) represents the position of the searcher and x3 is the heading angle. The

forward velocity is set to be a constant v = 150. The control, u, is the turning rate of the

vehicle that satisfies |u(t)| ≤ 50 for all t ∈ [0, 1]. In the scenario we consider, the HVU

travels in the positive x2 direction at a constant speed of 25, and the starting location

of the HVU is (35, 0). The initial state of the searcher is given by (x1(0), x2(0), x3(0)) =

(35, 0, π6 ). We assume the trajectory of the target is conditionally deterministic, with

starting x1 coordinate fixed at 70 and x2 coordinate distributed in the domain [0, 100]

according to a Beta distribution. That is, the starting location of the target is given by

y(0, ω) = (70, ω) for ω ∈ [0, 100] and p(ω) = p4,2(ω/100), where pα,β is the probability

density of a Beta(α, β) distribution. For a given starting location, the target moves to
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intercept the HVU with a trajectory determined by the algorithm specified in Ref. [26].

The uncertain optimal control problem is then to determine a control input u

which will minimize the probability of not detecting the target subject to the searcher

dynamics (3.23), control constraint, and given initial conditions. As explained in Section

1.1, the probability of non-detection can be modeled as

J =

∫ 100

0
exp

(
−
∫ 1

0
r̃(x(t), y(t, ω))dt

)
p(ω)dω,

where r̃ is the instantaneous rate of detection. The specific form of the detection rate

function depends on the sensor. In this example we use the Poisson scan model:

r̃(x(t), y(t, ω)) = β Φ
(F k −D ‖x(t)− y(t, ω)‖2 − b

σ

)
,

where Φ(·) is the standard normal cumulative distribution function, ‖x(t)− y(t, ω)‖ is

the Euclidean distance between the searcher and the target, β is the scan opportunity

rate, F k is the so-called “figure of merit” (a sonar characteristic), and σ reflects the

variability in the “signal excess”. In the simulation we use the values β = 1.9, F k = 120,

b = 20, D = 0.45, and σ = 150.

The proposed computational framework is applied to this search problem with

a LGL quadrature discretization in the parameter space with 42 nodes. Applying this

discretization results in a standard optimal control problem which is solved using a

pseudospectral discretization scheme in the time domain [30, 69]. The NLP package

SNOPT [27] is used to calculate the solution to NLP problem produced by this sequence

of approximations. This yields a numerical approximation to the optimal trajectory for

the searcher.
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Figure 3.1 demonstrates the numerical solution obtained by the proposed com-

putational scheme. Snapshots of the searcher and HVU trajectories are shown in Figure

3.1.a–d. For reference, a random sample of target trajectories with the initial starting

location subject to a Beta(4, 2) distribution is also shown. Shown in frame a), the

searcher moves away from the HVU towards the right boundary x1 = 70, as it is known

that the target originates at this line. In frames b) − d), the searcher, knowing that

the target is moving to intercept the HVU, tracks the possible target trajectories back

towards the HVU, while adjusting its trajectory so as to match velocity to the target.

To assess the validity of the numerical solution, we compute costates, λi, i = 1, 2, 3,

according to (3.14)-(3.15) using the numerical solution {x, u}. Observe that the con-

trol u enters into the Hamiltonian only through the linear term λ3 u. Therefore, the

Hamiltonian minimization condition (3.20) implies that

u(t) =


50, if λ3(t) < 0

−50, if λ3(t) > 0

(3.24)

In other words, optimal control is of bang-bang type where λ3 is the switching function.

As shown in Figure 3.2 the Hamiltonian minimization condition (3.24) is indeed satisfied.

Next we consider a scenario which differs from the previous scenario only in

the initial position of the target. In this scenario, the initial condition of the target is

modeled by a mixture of beta distributions, that is, p(ω) = p12,1(ω/100) +p1,12(ω/100),

where pα,β is the probability density of a Beta(α, β) distribution. In this model, at

61



35 40 45 50 55 60 65 70
0

10

20

30

40

50

60

70

80

90

100

x
1

x
2

t = 0 to t = 0.4

 

 
Searcher Trajectory

HVU trajectory

Target Trajectory

(a)

35 40 45 50 55 60 65 70
0

10

20

30

40

50

60

70

80

90

100

x
1

x
2

t = 0.4 to t = 0.6

(b)

35 40 45 50 55 60 65 70
0

10

20

30

40

50

60

70

80

90

100

x
1

x
2

t = 0.6 to t = 0.85

(c)

35 40 45 50 55 60 65 70
0

10

20

30

40

50

60

70

80

90

100

x
1

x
2
t = 0.85 to t = 1

(d)

Figure 3.1: Computed optimal trajectory for a searcher attempting to detect a target
which is moving to intercept a high-value unit (HVU). The starting location of tar-
get is unknown to the searcher and modeled by a Beta distribution. Arrows indicate
the orientation of the searcher, target and HVU trajectories. For reference, a random
sample of target trajectories is shown, where the initial starting location is determined
by a Beta(4, 2) distribution. The trajectory is computed using an LGL quadrature
discretization in the parameter space and an LGL-pseudospectral method in the time
domain, together with the NLP package SNOPT.
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Figure 3.2: The optimal control for the optimal search problem is of a bang-bang type.
This figure shows the switching function λ3 and optimal control u.

the initial time the target is likely to be near (70, 0) or (70, 100), but significantly less

likely to be near (70, 50). From the computed optimal searcher trajectory shown in

Figure 3.3, it is clear that the optimal behavior of the searcher changes depending

on the information the searcher has about the starting location of the target. The

searcher knows possible target trajectories are very likely to be in one of two groups,

one originating near the bottom of the frame and one near the top of the frame. In

Fig.3.3.a the searcher, knowing that the target is unlikely to be near the middle of the

frame, moves towards the right boundary x1 = 70, but nearer the bottom of the frame.

In Fig.3.3.b-c the searcher tracks the possible target trajectories back towards the HVU

while adjusting its trajectory to match velocity at the target. However, due to the

decreasing nature of the detection function, this strategy has diminishing returns. In

Fig.3.3.d, the searcher leaves the bottom group of possible target trajectories and moves

upwards in an attempt to detect the second group of possible target trajectories.
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Figure 3.3: Computed optimal trajectory for a searcher attempting to detect a target
which is moving to intercept a high-value unit (HVU). The starting location of target
is unknown to the searcher and modeled by a mixture of Beta distributions. Arrows
indicate the orientation of the searcher, target and HVU trajectories. For reference,
a random sample of target trajectories is shown, where the initial starting location is
determined by a Beta(4, 2) distribution. The trajectory is computed using an LGL
quadrature discretization in the parameter space and an LGL-pseudospectral method
in the time domain, together with the NLP package SNOPT.
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3.6 An Extension to Agents with Uncertain Dynamics

In this section we extend the numerical methods and necessary conditions

presented in previous sections to problems which incorporate parameter uncertainty

in the agent dynamics and initial state. We compare this work to that of Ref. [73,

75] which focus on an LGL-quadrature approximation of the parameter space. We

extend these results to demonstrate that any convergent quadrature scheme can be used

to approximate the parameter space, which is advantageous because the convergence

properties of the approximated state variables depend on the scheme chosen and the

probability distribution of the stochastic parameters [6].

Problem C. Determine the control function u ∈ L∞([0, 1];Rnu) that minimizes the

cost functional

J [x, u] =

∫
Ω

[
F (x(1, ω), ω) +

∫ 1

0
r(x(t, ω), u(t), t, ω)dt

]
dω (3.25)

subject to the dynamics

ẋ(t, ω) = f(x(t, ω), u(t), ω), (3.26)

initial condition x(0, ω) = x0(ω), and the control constraint g(u(t)) ≤ 0 for all t ∈ [0, 1].

In Problem C, L∞([0, 1];Rnu) is the set of all essentially bounded functions,

x : [0, 1] × Ω 7→ Rnx and r : Rnx × Rnu × R1 × Rnω 7→ R. Note that this Problem C

formulation differs slightly from that of Chapter 1. Here we have omitted the probability

density function p for notational convenience, since it can be included in the functions

F and r.
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Assumption 5. The function g : Rnu 7→ Rng is continuous and the set U = {ν ∈

Rnu |g(ν) ≤ 0} is compact.

In a real world scenario the set of allowable controls will be bounded and

therefore U , being a closed and bounded set, will be compact.

Assumption 6. Let A be the set of feasible controls to Problem C, that is the set

of all u ∈ L∞([0, 1];Rnu) such that u(t) ∈ U . There exists a compact set X ⊂ Rnx

such that for each feasible u and ω ∈ Ω, t ∈ [0, 1], x(t, ω) ∈ X where x(t, ω) = x0 +∫ t
0 f(x(s, ω), u(s), ω)ds for all t ∈ [0, 1].

This assumption essentially requires for all bounded controls that there is no

ω ∈ Ω for which the state has a finite escape time. A large class of nonlinear systems

satisfy this assumption, for example, input-to-state stable systems and systems for which

f is globally Lipschitz or satisfies a linear growth condition.

Assumption 7. The functions f and r are C1. The set Ω is compact and x0 : Ω 7→ Rnx

is continuous. Moreover, for the compact sets X and U defined in Assumptions 5-6 and

for each t ∈ [0, 1], ω ∈ Ω, the Jacobians rx(·, ·, t, ω) and fx(·, ·, ω) are Lipschitz on the

set X ×U , and the corresponding Lipschitz constants Lr and Lf are uniformly bounded

in ω and t. The function F (·, ω) is C1 on X for all ω ∈ Ω; in addition, F and Fx are

continuous with respect to ω.

In this section we demonstrate that a variety of quadrature-based numerical

integration schemes can be used to approximate the parameter space of Problem C.
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The following assumption about the convergence of the scheme allows methods such as

Gaussian quadrature and composite-Simpson to be applied.

Assumption 8. For each M ∈ N, there is a set of nodes {ωMi }Mi=1 ⊂ Ω and an associ-

ated set of weights {αMi }Mi=1 ⊂ R, such that for any continuous function h : Ω→ R,

∫
Ω
h(ω)dω = lim

M→∞

M∑
i=1

h(ωMi )αMi .

By selecting a finite number of nodes to approximate the parameter space,

we allow the state vector x : [0, 1] × Ω 7→ Rnx to be approximated by the state vector

X̄M : [0, 1] 7→ RMnx . We use X̄M = [x̄M1 , . . . , x̄MM ] to denote the discretized state vector.

That is, x̄Mi is the solution to the dynamical system

˙̄xMi (t) =f(x̄Mi (t), u(t), ωMi ) x̄Mi (0) =x0(ωMi ). (3.27)

We refer to the state vector X̄M , where the dependence on the parameter ω has been

discretized, as the semi-discretized state.

Once the numerical scheme is chosen, an approximate objective functional for

each M ∈ N can be defined by

J̄M [X̄M , u] =
M∑
i=1

[
F
(
x̄Mi (1), ωMi

)
+

∫ 1

0
r(x̄Mi (t), u(t), t, ωMi )dt

]
αMi . (3.28)

Problem CM. Determine the optimal control u ∈ L∞([0, 1];Rnu), that minimizes

the cost functional (3.28) subject to the dynamics (3.27) and the control constraint

g(u(t)) ≤ 0 for all t ∈ [0, 1].

We apply the approach of Sections 3.3 to Problem C. However, because of the

process used in the approximation and the inclusion of the stochastic parameter in the
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state dynamics, the state space for Problem CM is of a different dimension than that

of Problem C, which introduces new theoretical challenges. Before we introduce the

result on the convergence of the state variables, we must define the spaces on which we

conduct our analysis, and define a mapping between the two state spaces.

We denote by W1,∞([0, 1];Rnx) the Sobolev space of all essentially bounded

functions with essentially bounded distributional derivatives, which map the interval

[0, 1] into the space Rnx . We then define the state space X of Problem C to be the

set of all functions x : [0, 1] × Ω 7→ Rnx such that x(·, ω) ∈ W1,∞([0, 1];Rnx) for each

ω ∈ Ω and x(t, ·) is measurable for each t ∈ [0, 1]. Similarly, we define the state space

of Problem CM as X̄M = W1,∞([0, 1];RMnx). To create a mapping between these two

state spaces we introduce an interpolation scheme which maps the discretized state

X̄M ∈ X̄M to an associated state xM ∈ X .

Assumption 9. For each M , there exists a set of functions φM,i : Ω → R such

that φM,i(ω
M
j ) = δi,j. For a continuous function h : Ω 7→ R, we have hM (ω) =∑M

i=1 h(ωMi )φM,i(ω) converges uniformly to h.

Note that this assumption about the convergence properties of the interpola-

tion scheme allows polynomial interpolation schemes such as LGL or Chebyshev to be

applied to approximate Problem C.

We define ΩM = {ωM1 , . . . , ωMM } and for a function y : ΩM 7→ R, we refer

to γ : Ω 7→ R where γ(ω) =
∑M

i=1 y(ωMi )φM,i(ω) as the interpolation of y. For a

discretized trajectory X̄M = [x̄M1 , . . . , x̄MM ], we define the interpolation as the trajectory

68



χM : [0, 1] × Ω 7→ Rn such that χM (t, ω) =
∑M

i=1 x̄
M
i (t)φM,i(ω). For a given function

h : Ω 7→ R, we can create a sequence of functions yM : ΩM 7→ R such that the

interpolations γM → h uniformly in ω by setting yM (ωMi ) = h(ωMi ). Therefore each

h : Ω 7→ R is a uniform limit of a sequence of interpolating functions for some sequence

yM : ΩM 7→ R. From this property it is clear that for a given x ∈ X , there exists a

sequence X̄M ∈ X̄M such that the associated interpolation functions xM ∈ X converge

uniformly (in ω) to x.

To demonstrate that Problem CM is an appropriate approximation of Problem

C, we must show that given a sequence of optimal solutions {X̄∗M , u∗M} to Problem CM ,

an accumulation point of the interpolations {χ∗M , u∗M} is an optimal solution to Problem

C. However, it is important to note that if X̄M is a feasible state for Problem CM , it is

not necessarily true that its interpolation χM is a feasible state for Problem C. Therefore

when demonstrating the optimality of the accumulation point of such a sequence, it is

also necessary to also demonstrate its feasibility.

Theorem 3.6.1. Suppose Assumptions 5-9 hold. Let {(X̄∗M , u∗M )} be a sequence of

optimal solutions to Problem CM and let u∞ be an L2 accumulation point of u∗M for

a subsequence indexed by V ∈ N#
∞. Let χ∗M denote the interpolation of X̄∗M . Then

χ∗M → x∞ uniformly in ω along the subsequence indexed by V , where x∞ is the solution

to (3.26) for the control u∞. Furthermore (x∞, u∞) is an optimal solution to Problem

C and limM∈V J̄
M (X̄∗M , u

∗
M ) = J(x∞, u∞).

Proof. For notational simplicity, we denote by xu the solution to (3.26) for the control
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u, X̄u
M the solution to (3.27) for the control u and M nodes, and χuM the interpolation

of X̄u
M . It is important to note that ‖v‖ , v ∈ Rn denotes the Euclidean norm and

‖u‖2 , u ∈ L2 denotes the L2 norm.

Part 1 We demonstrate the convergence of χ∗M ,M ∈ V . Based on the conver-

gence properties of the dynamical system and the interpolation scheme, the following

are true for each t ∈ [0, 1]:

i Due to the uniform convergence of the interpolation scheme (Assumption 9), for

every ε > 0 there exists an M1 ∈ N and a δ > 0 such that if h1, h2 : Ω 7→ R are

continuous functions such that |h1(ω)− h2(ω)| < ε for every ω ∈ Ω, then |hM1 (ω)−

hM2 (ω)| < ε for every ω ∈ Ω,M > M1.

ii From Ref. [61], Lemma 5.6.5, we have ‖xu1(t, ω)− xu2(t, ω)‖ ≤ K ‖u1 − u2‖2 for

each ω ∈ Ω and some K ∈ [1,∞). Therefore if u∞ is an L2 accumulation point

of {u∗M}, the solution to (3.26) for u∞ is a uniform (in ω) accumulation point

of the solution to (3.26) for {u∗M}. Therefore there exists M2 ∈ N such that∥∥∥x∞(t, ω)− xu
∗
M2 (t, ω)

∥∥∥ < ε for each ω ∈ Ω.

iii By Assumption 9, for a fixed control u, the interpolation to the solution of (3.27)

for u converges to the solution of (3.26) for u. Therefore there exists an M3 ∈ N

such that for each M > M3 we have

∥∥∥∥xu∗M2 (t, ω)− χ
u∗M2
M (t, ω)

∥∥∥∥ < ε for all ω ∈ Ω.

iv Based on the statement in ii), the sequence xu
∗
M is uniformly (in ω) Cauchy con-

vergent. Therefore there exists an M4 > M1 ∈ N such that for each M > M4, we

have
∥∥∥xu∗M2 (t, ω)− xu∗M (t, ω)

∥∥∥ < δ for all ω ∈ Ω. Based on the statement in i), this
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implies that

∥∥∥∥χu∗M2
M (t, ω)− χ∗M (t, ω)

∥∥∥∥ < ε for all ω ∈ Ω.

Because i) − iv) hold for every t ∈ [0, 1], for a given t ∈ [0, 1] and ω ∈ Ω we have for

each M > max{M1,M3,M4}:

‖x∞(t, ω)− χ∗M (t, ω)‖ =
∥∥∥x∞(t, ω)− xu

∗
M2 (t, ω)

∥∥∥+

∥∥∥∥xu∗M2 (t, ω)− χ
u∗M2
M (t, ω)

∥∥∥∥
+

∥∥∥∥χu∗M2
M (t, ω)− χ∗M (t, ω)

∥∥∥∥
< 3ε

Part 2 We demonstrate that limM∈V J̄
M [X̄∗M , u

∗
M ] = J [x∞, u∞]. Consider the objective

functional JM which is approximated using the numerical scheme of Assumption 8, that

is:

JM [x, u] =
M∑
i=1

[
F
(
x(1, ωMi ), ωMi

)
+

∫ 1

0
r(x(t, ωMi ), u(t), t, ωMi )dt

]
αMi . (3.29)

Clearly {X̄∗M , u∗M} is a global minimizer to (3.28) if and only if {xu∗M , u∗M} is a global

minimizer of (3.29), and in this case J̄M [X̄∗M , u
∗
M ] = JM [xu

∗
M , u∗M ]. We therefore pro-

ceed by showing that if u∞ is an L2 accumulation point of u∗M , then JM [xu
∗
M , u∗M ] →

J [x∞, u∞].

First note that by Jensen’s inequality we have

∫ 1

0
‖u∗M (t)− u∞(t)‖ dt =

√[∫ 1

0

∥∥u∗M (t)− u∞(t)
∥∥ dt]2

≤

√∫ 1

0

∥∥u∗M (t)− u∞(t)
∥∥2
dt

= ‖u∗M − u∞‖2 .

From Assumption 7, r is bounded and Lipschitz on X×U × [0, 1]×Ω and G is

uniformly continuous on r(X,U, [0, 1],Ω). From the Lipschitz continuity of r, we have,
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for all ω ∈ Ω

lim
M∈V

∫ 1

0
‖r(xu∗M (t, ω), u∗M (t), t, ω)− r(x∞(t, ω), u∞(t), t, ω)‖dt

≤ lim
M∈V

Lr

∫ 1

0
‖xu∗M (t, ω)− x∞(t, ω)‖+ ‖u∗M (t)− u∞(t)‖dt

≤Lr ‖u∗M − u∞‖2 + lim
M∈V

Lr

∫ 1

0
‖xu∗M (t, ω)− x∞(t, ω)‖dt = 0

Because xu
∗
M (t, ·) → x∞(t, ·) uniformly, this convergence is uniform in ω. Then by the

uniform continuity of F and G, for each ε > 0, there must exist N ∈ N such that for

each M ∈ V with M > N the following statements hold for all ω ∈ Ω

∥∥∥∥∫ 1

0
r(xu

∗
M (t), u∗M (t), t, ω)dt−

∫ 1

0
r(x∞(t), u∞(t), t, ω)dt

∥∥∥∥ <ε2 ,∥∥∥F (xu∗M (1), ω
)
− F (x∞(1), ω)

∥∥∥ <ε
2
.

This implies, by the statement in Remark 1, limM∈V J
M [xu

∗
M , u∗M ] = J [x∞, u∞]. Be-

cause J̄M [X̄∗M , u
∗
M ] = JM [xu

∗
M , u∗M ], we have limM∈V J̄

M [X̄∗M , u
∗
M ] = J [x∞, u∞].

Part 3 We demonstrate that {x∞, u∞} is the optimal solution to Problem C. Let u

be an arbitrary feasible control for Problem C. Then, based on the optimality of u∗M ,

J̄M (X̄∗M , u
∗
M ) ≤ J̄M (X̄u

M , u) for all M ∈ V . Thus

J(x∞, u∞) = lim
M∈V

J̄M (X̄∗M , u
∗
M ) ≤ lim

M∈V
J̄M (X̄u

M , u) = J(xu, u).

Therefore (xu
∞
, u∞) is an optimal solution for Problem C, since it produces the mini-

mum cost among all feasible solutions.

For the set ΩM of interpolation nodes used in the approximation of Problem

C, the set of interpolated trajectories ΞM = {χM ∈ X |X̄M ∈ X̄M} is a linear subspace
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of X , so that we can consider Problem CM as a restriction of Problem C to the linear

subspace ΞM with approximated objective functional (3.29). Now note that for every

x ∈ X there exists a sequence χM ∈ ΞM such that χM → x uniformly in ω, and the

approximated objective functional (3.29) epiconverges to (3.25). We therefore compare

our convergence result to the consistency result presented in Chapter 4 of Ref. [61],

where a similar framework is used to determine the convergence properties of a time-

discretization of the standard nonlinear optimal control problem.

The reader may note that it is possible to use Part 2 of the Proof of Theorem

3.6.1 to demonstrate that an accumulation point of a sequence of global minimizers to

(3.29) is a global minimizer to (3.25). Therefore it is possible to approximate Problem

C by simply approximating the objective functional and solving the problem without

approximating the state space and introducing an interpolation scheme. However, the

approach taken in Problem CM is desirable for two reasons. First, by approximating

the state space as well as the objective functional, the approximating problem is a stan-

dard non-linear optimal control problem to which existing results such as Pontryagin’s

Minimum Principle [33] can be applied. By addressing the convergence properties of

the approximated adjoint variables, we can extend the Covector Mapping Theorem of

Ref. [30] to Problem C. Second, the interpolation scheme allows a convenient way to

determine the value of the approximated state. Note that without the interpolation

scheme, for a given optimal control, if one wishes to know x∗M (t, ω) where ω is not a

node used in the solution of the approximated problem, it is necessary to solve the ordi-

nary differential equation given by (3.26) for that value of ω. The interpolation scheme
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allows one to determine this value and guarantees that the approximation will converge

uniformly as the number of nodes used in the approximation scheme increases.

For many applications, the dual variables provide a method to determine the

solution of an optimal control problem or a tool to validate a numerically computed

solution. For numerical schemes based on direct discretization of the control problem,

analyzing the convergence of the dual variables may also lead to insight into the conver-

gence and validity of approximation scheme [30,31]. Because Problem CM is a standard

nonlinear optimal control problem, it admits a dual problem by the Pontryagin Mini-

mum Principle [33]. In this section we address the convergence properties of the dual

variables for Problem CM and the dual Problem CMλ. Using a weighted Hamiltonian

inspired by the Covector Mapping Theorem [30], we demonstrate that for a convergent

sequence of optimal solutions to Problem CM , the corresponding adjoint variables will

converge. First we introduce the dual to Problem C:

Problem Cλ. [24] If (x∗, u∗) is an optimal solution to Problem C, then there exists

an absolutely continuous costate vector λ(t, ω) such that

λ̇∗(t, ω) =− fx(x∗(t, ω), u(t), ω)λ∗(t, ω)− rx(x∗(t, ω), u(t), t, ω) (3.30)

λ∗(1, ω) =Fx(x(1, ω), ω). (3.31)

Furthermore, the optimal control u∗ satisfies the equality

u∗(t) = min
u∈U

H(x∗, λ∗, u, t),
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where H is given by

H(x, λ, u, t) =

∫
Ω

[
ẋ(t, ω)Tλ(t, ω) + r(x(t, ω), u(t), t, ω)

]
dω. (3.32)

Next we introduce the dual to Problem CM . Because Problem CM is a standard non-

linear optimal control problem, it admits a first-order necessary condition in the form

of Pontryagin’s Minimum Principle. The Hamiltonian and adjoint system are given by:

H̄M (X̄M , Γ̄M , u, t) =

M∑
i=1

[
˙̄xTi γ̄i + r(x̄i, u, t, ω

M
i )αMi

]
.

Here Γ̄M = [γ̄1, . . . , γ̄M ] is the absolutely continuous costate variable satisfying

˙̄γi(t) =− fx(x̄i(t), u(t), ωMi )γ̄i − rx(x̄i(t), u(t), t, ωMi )αMi ,

γ̄i(1) =Fx(x̄i(1), ωMi )αMi .

To demonstrate the convergence properties of this system as M →∞, we introduce the

weighted costate vector Λ̄M = [λ̄1, . . . , λ̄M ] such that αMi λ̄i = γ̄i. Using this weighted

costate vector, we define

HM (X̄, Λ̄, u, t) =
M∑
i=1

[
˙̄xi(t)

T λ̄i + r(x̄i(t), u(t), t, ωMi )
]
αMi . (3.33)

It is clear that H̄M (X̄M , Γ̄M , u, t) = HM (X̄M , Λ̄M , u, t). Now note that αMi
˙̄λ∗i = ˙̄γ∗i so

that the weighted costate dynamics are given by

˙̄λ∗i =− fx(x̄∗i (t), u
∗
M (t), ωMi )λ̄∗i − rx(x̄∗i (t), u

∗
M (t), t, ωMi ), (3.34)

λ̄∗i (1) =Fx(x̄∗i (1), ωMi ). (3.35)

Using the weighted costate, we define the dual problem to Problem CM :
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Problem CMλ. If (X̄∗M , u
∗
M ) is an optimal solution to Problem CM , then there exists

an absolutely continuous costate vector Λ̄(t) = [λ̄1(t), . . . , λ̄M (t)] given by (3.34)-(3.35).

Furthermore, for almost every t ∈ [0, 1], the optimal control u∗M satisfies the equation

u∗M (t) = min
u∈U

HM (X̄∗M , Λ̄
∗
M , u, t)

It is clear that the Hamiltonian HM of Problem CMλ is the discretization of the

Hamiltonian H of Problem Cλ, and that (3.34-3.35) is the discretization of (3.30-3.31).

Therefore Problem CMλ is the discretization of Problem Cλ. Unlike the discretization

of the time domain, discretization of the parameter space involves no endpoint condi-

tions which must be satisfied or dynamical constraints which must be discretized. The

existence of a feasible solution to Problem CMλ is not in question, as it is guaranteed by

the Pontryagin Minimum Principle. The Covector Mapping Theorem of Ref. [30] can

then be extended to the optimal ensemble control framework by the following Theorem,

which addresses the convergence of the adjoint variables and Hamiltonians.

Theorem 3.6.2. Let {(X̄∗M , Λ̄∗M , u∗M )} be a sequence of solutions to Problem CMλ, χ∗M

be the interpolation of X̄∗M , ẋM be the interpolation of ˙̄X∗M , ψ∗M be the interpolation of

Λ̄∗M . Let u∞ be an accumulation point of u∗M and let λ∞ be the solution to (3.30-3.31)

for u∞. Then ψ∗M converges uniformly to λ∞ and (x∞, λ∞, u∞) is a solution to Problem

Cλ.

Proof. The proof follows from the same argument as the proof of Theorem 1.
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Chapter 4

A Sample Average Scheme for

Approximation of the Uncertain

Optimal Control Problem

In Chapter 3 we introduced a scheme for the optimal control of uncertain

systems based on a quadrature approximation of the expectation over the parameter

space. However, due to the curse of dimensionality, this approach is inherently limited

to systems with a low-dimensional parameter space. Indeed, as the number of stochas-

tic parameters increases, the dimension of the approximated optimal control problem

increases exponentially, therefore a different numerical method must be used in these

cases [6]. This difficulty is inherent to the approximation of dynamical systems with

stochastic parameters and other techniques such as polynomial chaos are also compu-

tationally expensive for high-dimensional problems. Therefore, in many cases Monte
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Carlo simulation is required to approximate an uncertain dynamical system [6].

In this chapter we propose a sample average approximation approach to the

uncertain optimal control problem which is applicable for high-dimensional problems.

In this method, an independently distributed random draw is taken from the parameter

space, and the expectation in the objective functional is approximated by the sample

average. We refer to [3,5] for early work on the sample average approximation approach

to stochastic optimization, which also provides our foundation. For a treatment of cases

in finite dimensions; see [81]. Because the number of nodes sampled does not depend

on the dimension of the parameter space, this method does not suffer from the same

curse of dimensionality as the previously-considered quadrature method. When the

sample average scheme is applied to the uncertain optimal control problem, it produces a

sequence of high-dimensional nonlinear optimal control problems. As in the quadrature

approach considered in Chapter 3, these approximate problems can be solved using

existing techniques from computational optimal control [29,41,79].

The aim of this chapter is the rigorous analysis of the convergence proper-

ties of algorithms for uncertain optimal control which are based on this technique of

sample average approximation. Because the collocation nodes for the parameter space

are selected randomly, the convergence results of the previous chapter can not be di-

rectly extended to this case. Instead, we establish convergence properties for the sample

average method by leveraging existing results for direct approximation schemes in com-

putational optimal control [41,61,79] and an extension of the strong law of large numbers

(see [3, 5]). In addition, we establish a necessary condition for optimality for both the
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unconstrained and constrained problems in the form of an optimality function based on

the L2-Frechet derivative of the objective functional. We demonstrate the approximate

based on a sample average scheme is consistent in the sense of Polak [61, Section 3.3]

by analyzing the convergence of the objective and optimality functions. This property

guarantees that an accumulation point of a sequence of optimal (stationary) points of

the approximate problem will be an optimal (stationary) point to the original problem.

4.1 Formulation of the Uncertain Control Problem

The focus of this chapter is a computational method for the optimal control

of uncertain systems using a sample average approach. Because we our convergence

analysis for this method utilizes an extension of the strong law of large numbers rather

than the quadrature approach of Chapter 3, we require a different problem setting

and new regularity assumptions on the functions used in the problem formulation. In

this problem formulation both the cost functional and system dynamics may depend

on stochastic parameters, and the objective is to find a control which minimizes the

expectation of the cost functional over a probability space of possible parameter values.

In this problem, the goal is to find is to find an initial state and control pair η = (ξη, uη)

that minimizes the objective functional

J(η) = EP [F (xη(1, ω), ω)]. (4.1)

Here EP is the expectation on the probability space (Ω,Σ, P ) where the sigma-field Σ

is complete with respect to the measure P and ω ∈ Ω. Furthermore, xη(t, ω) is the
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solution to the uncertain dynamical system

ẋη(t, ω) =f(xη(t, ω), uη(t), ω), x(0, ω) =ξη + ι(ω), (4.2)

almost surely. Here ξη ∈ Rn, uη : [0, 1] 7→ Rm, x : [0, 1] × Ω 7→ Rn, ι : Ω 7→ Rn,

f : Rn × Rm × Ω 7→ Rn, and F : Rn × Ω 7→ R. Note that for a fixed ω ∈ Ω, (4.2) is a

standard deterministic dynamical system, therefore the existence and uniqueness of the

solution can be guaranteed under suitable regularity conditions. Such conditions assure

that the objective functional (4.1) is well-defined. Note that this problem formulation is

more general than the Problem B considered in Chapter 3 in that the parameter space

is not required to be a compact Euclidean space, and the initial condition is included

as a decision variable.

In this chapter we consider both constrained and unconstrained optimal con-

trol problems for the objective functional (4.1) and dynamics (4.2). Before we define

these problems, we introduce the spaces on which we conduct our analysis. To develop

optimality conditions, we make use of an inner product on the space of decision vari-

ables. Therefore we work in the L2 topology. Let Lm2 [0, 1] be the space of all functions

v : [0, 1] 7→ Rm such that
∫ 1

0 ‖v(t)‖2 dt <∞. We carry out our analysis in a subspace of

the Hilbert space

H2 = Rn × Lm2 [0, 1],

where the inner product and norm onH2 are defined for any η = (ξη, uη), η′ = (ξη
′
, uη

′
) ∈
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H2 by

〈η, η′〉H2 = 〈ξη, ξη′〉+ 〈uη, uη′〉2.

Therefore the norm in H2 is given by

‖η‖2H2
= ‖ξη‖2 + ‖uη‖22 .

In this paper we address the two cases of the uncertain optimal control problem,

where the control u(t) is constrained to be in either a compact convex set or an open

convex set in Rm for almost every t ∈ [0, 1]. We therefore define the admissable sets for

each of these problems as follows: given compact, convex sets ΞC ⊂ Rn and UC ⊂ Rm,

we define the set of admissable controls

UC = {u ∈ Lm2 [0, 1] |u(t) ∈ UC for almost every t ∈ [0, 1]}.

The set of all admissable state-control pairs for this problem is then given by HC =

ΞC ×UC . Similarly given bounded, open, convex sets ΞO ⊂ Rn and UO ⊂ R, we define

the set of admissable controls

UO = {u ∈ Lm2 [0, 1] |u(t) ∈ UO for almost every t ∈ [0, 1]}.

The set of all admissable state-control pairs for this problem is then given by HO =

ΞO ×UO.

The sets HC and HO are a subsets of the pre-Hilbert space H∞,2 = {(ξ, u) ∈

H2| ‖u‖∞ <∞}. For mathematical convenience, we assume ΞO ⊂ ΞC and UO ⊂ UC so

that HO ⊂ HC . We observe that in this work we define the admissable set differently

than in Polak [61, Chapter 4], which requires the pointwise control constraint be satisfied
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for all t ∈ [0, 1]. Let U ⊂ Rm. We note that for each u ∈ Lm2 [0, 1] with u(t) ∈ U for

almost every t ∈ [0, 1], there is a member ũ of its equivalence class such that ũ(t) ∈ U

for every t ∈ [0, 1]. Therefore for any given constraint set U , we can apply the standard

results from the theory of differential equations to controls from our admissable set.

In developing optimality conditions, we evaluate derivatives with respect to

the decision variable η. In order to guarantee that these derivatives exist, we work on

a space H which is slightly larger than HC . To define the space H, let ρ1, ρ2 ∈ R be

constants large enough so that ‖ξη‖ < ρ1, ‖uη‖∞ < ρ2, for all η ∈ HC . The existence of

these constants is guaranteed by the compactness of ΞC and UC . Now let H = {(ξ, u) ∈

Rn ×Lm2 [0, 1]| ‖ξ‖ < ρ1, ‖u‖∞ < ρ2}. The space H is open in the L∞ topology and the

inclusion HO ⊂ HC ⊂ H holds. The reader should note that all convergence results on

the sets HO,HC , and H are with respect to the L2 topology.

With the appropriate function spaces defined, we now state the uncertain

optimal control problems that are the focus of this work:

Problem DC : Find an initial state and control pair η = (ξη, uη) ∈ HC to

minimize the objective functional (4.1) subject to the uncertain dynamical system (4.2).

Problem DO : Find an initial state and control pair η = (ξη, uη) ∈ HO to

minimize the objective functional (4.1) subject to the uncertain dynamical system (4.2).

Because the constraint set UC for Problem DC is closed, this formulation can

be used to approach uncertain optimal control problems with inequality constraints, as

long as set of points which satisfy these constraints is compact and convex. Problem

DO can be used to approach unconstrained optimal control problems by making UO
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large enough that all reasonable controls lie in the admissable set. To conduct analysis

of Problems DC and DO we need the following regularity assumptions:

Assumption 10. There exists a compact set X0 ⊂ Rm such that for each η ∈ H,

xη(t, ω) ∈ X0 for all t ∈ [0, 1], ω ∈ Ω, where xη is the solution to (4.2) for η = (ξη, uη).

This assumption essentially requires that there does not exist ω ∈ Ω such that

the dynamical system given by f(·, ·, ω) has a finite escape time. This assumption will

be valid for a number of dynamical systems frequently encountered in control problems,

for example input-to-state stable systems and systems for which f is globally Lipschitz

or satisfies a linear growth condition in the state variable.

Assumption 11. For the set X0 defined in Assumption 10 and the set V = {v ∈

Rm| ‖v‖ < ρ2}, for each ω ∈ Ω the function f(·, ·, ω) is continuously differentiable

on X0 × V and for each x ∈ X0, v ∈ V, f(x, v, ·) is measurable and bounded on Ω.

Furthermore, there exists a measurable function Lf : Ω 7→ [1,∞) such that for all

x′, x′′ ∈ X0, and v′, v′′ ∈ V , the following inequalities hold for every ω ∈ Ω:

∥∥f(x′, v′, ω)− f(x′′, v′′, ω)
∥∥ ≤ Lf (ω)

[∥∥x′ − x′′∥∥+
∥∥v′ − v′′∥∥] ,

∥∥fx(x′, v′, ω)− fx(x′′, v′′, ω)
∥∥ ≤ Lf (ω)

[∥∥x′ − x′′∥∥+
∥∥v′ − v′′∥∥] ,

∥∥fu(x′, v′, ω)− fu(x′′, v′′, ω)
∥∥ ≤ Lf (ω)

[∥∥x′ − x′′∥∥+
∥∥v′ − v′′∥∥] .

Assumption 12. For the set X0 defined in Assumption 10, F (·, ω) is continuously

differentiable on X0 for each ω ∈ Ω, and F (x, ·), Fx(x, ·) are measurable for each x ∈ X0.

Furthermore, there exists a measurable function LF : Ω 7→ [1,∞) such that for any
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x′, x′′ ∈ X0, the following inequalities hold for every ω ∈ Ω :

∥∥F (x′, ω)− F (x′′, ω)
∥∥ ≤LF (ω)

∥∥x′ − x′′∥∥ , ∥∥Fx(x′, ω)− Fx(x′′, ω)
∥∥ ≤LF (ω)

∥∥x′ − x′′∥∥ .
Assumptions 11-12 require the differentiability of the functions in the problem

formulation with respect to the states and controls, as well as measurability and inte-

grability of the Lipschitz constant with respect to the stochastic parameter ω. These

assumptions will be valid for a variety of problem frameworks in physical and other

applications. For instance, in the optimal search and ensemble control settings intro-

duced in Sections 1.1 and 1.2, the parameter space is a compact subspace of Rn and

the functions in the problem formulation are sufficiently smooth, therefore Assumption

12 is valid in these cases. These assumptions are used later to establish convergence

properties and optimality conditions for Problems DC and DO.

In order to facilitate the analysis of the computational framework for Problems

DC and DO, we first state the following results on uncertain dynamical systems.

Proposition 4.1.1. Suppose that Assumptions 10-11 are satisfied. Then, for any η ∈

H, the uncertain dynamical systems (4.2) has a unique solution xη(·, ω) for each ω ∈ Ω.

Proof. Follows directly from Proposition 5.6.5 of [61].

Proposition 4.1.2. [2, Lemma 4.51](Carathéodory Functions are Jointly Measurable)

Let (S,Σ) be a measurable space, X a separable metric space, and Y a metrizable space.

Let f : X × S 7→ Y be a function such that

i) for each x ∈ X, f(x, ·) : S 7→ Y is measurable;
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ii) for each s ∈ S, f(·, s) : X 7→ Y is continuous.

Then f is called a Caratheodory function and f : X × S 7→ Y is jointly measurable.

Lemma 4.1.3. Suppose that Assumption 10 is satisfied, and let V be the set defined

in Assumption 11. Let κ : Rl × V × Ω 7→ Rl be such that κ(·, ·, ω) is continuously

differentiable for each ω ∈ Ω and κ(x, u, ·) is measurable for each x ∈ Rl, v ∈ V .

Suppose also that there exists a measurable function K : Ω 7→ [1,∞) such that for every

x, x′ ∈ Rn, and v, v′ ∈ V, and ω ∈ Ω,

∥∥κ(x, v, ω)− κ(x′, v′, ω)
∥∥ ≤ K(ω)

[∥∥x− x′∥∥+
∥∥v − v′∥∥] .

For each η = (ξη, uη) ∈ H, ω ∈ Ω, let χη : [0, 1]× Ω→ Rl be the solution to

χ̇η(t, ω) = κ(χη(t, ω), uη(t), ω), χ(0) = ξη.

Then χη is measurable and for each ω ∈ Ω we have

∥∥∥xη′(t, ω)− xη′′(t, ω)
∥∥∥ ≤ √2K(ω)eK(ω)

∥∥η′ − η′′∥∥
H2
.

Proof. Let η = (ξη, uη) ∈ H. Let χη0 : [0, 1] × Ω 7→ Rl be such that χη0(0, ω) = ξη for

each ω ∈ Ω, χη(·, ω) is absolutely continuous, and χη0(t, ·) is measurable. Then we define

a sequence of functions {χηn}∞n=0 satisfying

χηn+1(t, ω) = ξη +

∫ t

0
κ(χηn(s, ω), uη(s), ω)ds.

We demonstrate the measurability of χηn, for each n ∈ N by induction. For a given

n ∈ N, t ∈ [0, 1], consider the function ψn : [0, t]× Ω→ Rl,

ψn(s, ω) = κ(χηn(s, ω), u(s), ω).
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For each n ∈ N, if χηn is measurable, then ψn is a Carathéodory function and therefore

measurable by Proposition 4.1.2, and thus χηn+1(t, ·) = ξη +
∫ t

0 ψn(s, ·)ds is measurable.

The function χ0 is Carathéodory by definition and therefore measurable, which implies

that χηn is measurable for each n ∈ N by induction. By the proof of Picard’s Lemma

(see [61, Lemma 5.6.3]), we have χηn(·, ω) → χη(·, ω) pointwise for each ω ∈ Ω. The

function χη is thus a pointwise limit of measurable functions and is therefore measurable.

It follows from the proof of Lemma 5.6.7 of [61] that for L̃(ω) =
√

2K(ω)eK(ω), for all

η′, η′′ ∈ H, ω ∈ Ω, and t ∈ [0, 1],

∥∥∥χη′(t, ω)− χη′′(t, ω)
∥∥∥ ≤ L̃∥∥η′ − η′′∥∥H2

,

and the conclusion follows.

4.2 Approximation Using a Sample Average Scheme

In this section we introduce the approximate optimal control problem based

on a sample average scheme. Sample average approximations have been successfully

applied to a wide variety of problems from the field of stochastic optimization with

finite-dimensional decision spaces [81]. In the sample average approach, a random sam-

ple of parameter values is drawn from the parameter space, and the expectation in the

objective functional is approximated by the sample mean. When the sample average

approximation is applied to a stochastic programming problem with a finite-dimensional

decision space, this process results in a sequence of approximating nonlinear program-

ming problems. In this work we use the sample average method to approximate Prob-
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lems DC and DO, which have an infinite-dimensional decision space. The resulting

approximate problem is a standard optimal control problem that can be solved using

existing techniques from the field of control theory [12]. In addition, we use an extension

of the Strong Law of Large Numbers (see [3, 5]) to analyze the convergence properties

of such an approximation.

To apply this approximation scheme, for a given sample size M , we take an

independent P -distributed sample {ω1, ω2, · · · , ωM} from the parameter space Ω and

approximate the objective functional (4.1) by the sample average

JM (η)
.
=

1

M

M∑
i=1

F
(
xη(1, ωi), ωi). (4.3)

The approximate uncertain optimal control problems can then be stated as follows:

Problem DM
C : find η ∈ HC to minimize the objective functional (4.3), where

xη is the solution to the uncertain dynamical system (4.2).

Problem DM
O : find η ∈ HO to minimize the objective functional (4.3), where

xη is the solution to the uncertain dynamical system (4.2).

We discuss the convergence properties of Problems DM
C and DM

O in the context

of epiconvergence of the objective functionals. The concept of epiconvergence provides

a natural framework to analyze the approximation of an optimization problem, as it

allows us to discuss the convergence of the inf and arg min operators. For a survey

of preliminary results on epiconvergence and stochastic optimization, see Section 2.4.

To demonstrate the epiconvergence of the approximate objective functional JM to the

original objective functional J , we show that J can be written as the expectation of a
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random lower semi-continuous function. To this end we introduce T : H× Ω given by

T (η, ω)
.
= F (xη(1, ω), ω)

The following lemma establishes that T is a random lower semi-continuous function.

Lemma 4.2.1. For each ω ∈ Ω, the function T (·, ω) is Lipschitz continuous with Lip-

schitz constant LT (ω) =
√

2LF (ω)Lf (ω)eLf (ω). Furthermore, T is B ⊗ Σ measurable,

where B is the Borel sigma-field generated by the open sets of H.

Proof. From Assumption 11 and Lemma 5.6.7 of Ref. [61], it is known that for each

η, η′ ∈ H and ω ∈ Ω,

∥∥∥xη(1, ω)− xη′(1, ω)
∥∥∥ ≤ √2Lf (ω)eLf (ω)

∥∥η − η′∥∥
H2
.

It follows from Assumption 12 that

∣∣T (η, ω)− T (η′, ω)
∣∣ ≤ √2LF (ω)Lf (ω)eLf (ω)

∥∥η − η′∥∥
H2
.

F : Rn×Ω 7→ R is measurable by Assumption 12 and Proposition 4.1.2. For each η ∈ H,

xη(1, ·) is measurable by Lemma 4.1.3, so that T (η, ·) = F (xη(1, ·), ·) is measurable. T

is therefore B × Σ measurable by Proposition 4.1.2.

We can now write the objective functional J and approximate objective func-

tional JM in terms of the function random lower semi-continuous function T :

J(η) =EP
[
T (η, ω)

]
, JM (η) =

1

M

M∑
i=1

T (η, ωi).

Before we can establish the epiconvergence JM →epi J using Proposition 2.4.1, we must

show that the decision space is a complete, separable metric space.
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Lemma 4.2.2. The space HC is a complete, separable metric space.

Proof. As a subset of the separable metric space H2,HC is separable. To establish

completeness, we show that HC is a closed subset of the complete space H2. Suppose

that there is a sequence uk ∈ UC , but uk → u ∈ Lm2 [0, 1] with u /∈ UC . Define

dU : Rm 7→ R by dU (v) = minν∈UC
‖ν − v‖ . Because UC is compact, dU is well defined.

Now let A = {t ∈ [0, 1]|u(t) /∈ UC} and Aj = {t ∈ [0, 1]|dU (u(t)) > 1
j }. Note that

µ(A) > 0, where µ is the Lebesgue measure on [0, 1]. Since UC is closed, if v ∈ Rm but

v /∈ UC , then dU (v) > 0. Therefore A = {t ∈ [0, 1]|dU (u(t)) > 0}. Because A = ∪j∈NAj

and µ(A) > 0, there must exist j ∈ N such that m(Aj) > 0. Then:

‖uk − u‖2 =

(∫ 1

0
‖uk(t)− u(t)‖2 dt

) 1
2

≥

(∫
Aj

‖uk(t)− u(t)‖2 dt

) 1
2

≥

(∫
Aj

[dU (u(t))]2 dt

) 1
2

≥1

j

√
µ(Aj).

This is a contradiction, therefore UC is closed in Lm2 [0, 1]. As a closed subset of a

complete space, UC is complete, and therefore HC = ΞC ×UC is complete.

We can now demonstrate the epiconvergence of the approximate objective

functional using the following assumption.

Assumption 13. Let LT : Ω 7→ [1,∞) be defined as in Lemma 4.2.1. Then LT ∈ L1(Ω).

Note that this assumption is valid when Ω is a compact subset of Rd and the

functions f and F are continuously differentiable with respect to ω.
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Theorem 4.2.3. Suppose that Assumptions 10-13 hold. Then JM epiconverges almost

surely to J on HC and JM epiconverges almost surely to J on HO as M →∞.

Proof. By Lemma 4.2.2, HC is a separable complete metric space. By Lemma 4.2.1, T

is B⊗Σ measurable and there exists scalars a and b such that T (η, ω) ≥ a+ bLT (ω) for

all η ∈ HC . By Assumption 13 the function a+ bLT (ω) is integrable. The convergence

JM
∣∣
HC
→epi J

∣∣
HC

almost surely then follows from Theorem 2.4.1. This convergence,

together with the fact that JM (η)→ J(η) almost surely for all η ∈ HO establishes the

convergence JM
∣∣
HO
→epi J

∣∣
HO

almost surely.

Theorem 4.2.3 and Proposition 2.3.1 show that our sample average scheme

has the property that accumulation points of a sequence of global minimizers to the

approximate problem are global minimizers of the original problem.

4.3 Optimality Conditions

Absent convexity, it is not generally possible to determine whether a numeri-

cally computed solution to an optimal control problem is a global minimizer. Necessary

conditions, such as Pontryagin’s Minimum Principle [33, 63], provide a method to as-

sess the optimality of a numerically computed solution. Polak [61, Chapter 4], provides

necessary conditions for the standard nonlinear optimal control problem in terms of op-

timality functions, which determine the stationary points of the objective functional. In

this section we apply this approach to derive optimality functions for the non-standard

uncertain Problems DC , DO, D
M
C , and DM

O which are based on the L2-Frechet deriva-
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tive of the objective functional. To establish the Frechet derivatives of the objective

functionals, we first state the Frechet derivative of T .

Proposition 4.3.1. Suppose that Assumptions 10-12 are satisfied.

i) For any ω ∈ Ω, η ∈ H and δη ∈ H∞,2, T (·, ω) has a Frechet derivative DT (η; δη;ω)

at η given by 〈∇ηT (η, ω), δη〉H2

The gradient ∇ηT (η, ω) = (∇ξT (η, ω),∇uT (η, ω))T ∈ H∞,2 is given by

∇ξT (η, ω) = pη(0, ω), (4.4)

∇uT (η, ω)(s) = fTu (xη(s, ω), uη(s), ω)pη(s, ω), (4.5)

and pη(s, ω) is the solution to the adjoint equation

ṗη(s, ω) =− fTx (xη(s, ω), u(s), ω)pη(s, ω) for s ∈ [0, 1], pη(1, ω) =Fx(xη(1, ω), ω).

(4.6)

ii) The gradient ∇ηT (·, ω) is Lipschitz continuous on HC .

iii) For any η ∈ H and δη ∈ H∞,2, T (·, ω) has a Frechet differential DT (η; δη;ω) at

η.

Proof. The proposition follows directly from Corollary 5.6.9 of [61].

The existence of the Frechet derivative in Proposition 4.3.1 allows us to intro-

duce the Frechet derivatives of J and JM by employing Fubini’s theorem.

Lemma 4.3.2. Suppose that Assumptions 10-13 are satisfied. Then for any η ∈ H, δη ∈

H∞,2:
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i) J has a Frechet differential DJ(η; δη) at η given by DJ(η; δη) = 〈∇J(η), δη〉H2

with the gradient given by

∇J(η) = EP [∇ηT (η, ω)] , (4.7)

ii) The gradient ∇J is Lipschitz continuous on HC .

iii) JM has a Gateuax differential DJM (η; δη) at η given by DJM (η; δη) = 〈∇JM (η), δη〉H2

with the gradient given by

∇JM (η) =
1

M

M∑
i=1

∇ηT (η, ωi), (4.8)

iv) The gradient ∇JM is Lipschitz continuous on HC .

Proof. We prove i) and ii); iii) and iv) follow by an identical argument with Ω replaced

by {ω1, . . . , ωM} and P replaced by the counting measure normalized to 1.

Proof of i): Let δη ∈ H∞,2, η ∈ H, ω ∈ Ω. Because H is open in the L∞

topology there exists a λ∗ > 0 such that η + λδη ∈ H for all λ ∈ [0, λ∗]. From Lemma

4.2.1, T (·, ω) is Lipschitz continuous in η with Lipschitz constant LT (ω) for each ω ∈ Ω,

and by Assumption we have 13 LT (ω) ∈ L1(Ω). From this fact we have

|T (η + λδη, ω)− T (η, ω)| ≤
(
LT (ω) ‖δη‖H2

)
λ.

Therefore for each ω ∈ Ω, η ∈ H, λ ∈ [0, λ∗],

∣∣∣∣T (η + λδη, ω)− T (η, ω)

λ

∣∣∣∣ ≤ LT (ω) ‖δη‖H2
.
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Then the Gateaux derivative of J is given by:

DJ(η; δη) = lim
λ↓0

EP [T (η + λδη, ω)]− EP [T (η, ω)]

λ

= lim
λ↓0

EP
[
T (η + λδη, ω)− T (η, ω)

λ

]
=EP

[
lim
λ↓0

T (η + λδη, ω)− T (η, ω)

λ

]
=EP [DT (η, δη;ω)] ,

where we have used the dominated convergence theorem. Let δη = (ξδη, uδη). Note that

EP
[∫ 1

0

〈
[∇uT (η, ω)(t)] , uδη(t)

〉
dt

]
≤ EP [‖∇T (η, ω)‖H2

‖δη‖H2

]
is bounded, so that we can write

DJ(η; δη) =EP
[〈
∇ξT (η, ω), ξδη

〉]
+ EP

[∫ 1

0

〈
∇uT (η, ω)(t), uδη(t)

〉
dt

]
=EP

[〈
∇ξT (η, ω), ξδη

〉]
+

∫ 1

0
EP
[〈
∇uT (η, ω)(t), uδη(t)

〉]
dt

=
〈
EP [∇ξT (η, ω)] , ξδη

〉
+

∫ 1

0

〈
EP [∇uT (η, ω)(t)] , uδη(t)

〉
dt

=
〈
EP [∇ηT (η, ω)] , δη

〉
H2
,

where we have used Fubini’s theorem. To demonstrate that the Gateaux derivative DJ
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is the Frechet derivative of J , consider the quantity

lim
‖δη‖H2

→0

‖J(η + δη)− J(η)−DJ(η; δη)‖H2

‖δη‖H2

= lim
‖δη‖H2

→0

∥∥EP [T (η + δη, ω)− T (η, ω)−DT (η; δη;ω)]
∥∥
H2

‖δη‖H2

≤ lim
‖δη‖H2

→0
EP
[
‖T (η + δη, ω)− T (η, ω)−DT (η; δη;ω)‖H2

‖δη‖H2

]

=EP
[

lim
‖δη‖H2

→0

‖T (η + δη, ω)− T (η, ω)−DT (η; δη;ω)‖H2

‖δη‖H2

]

= 0,

where we have used dominated convergence.

The proof of ii) follows directly from the Lipschitz continuity of ∇ηT (η, ω).

We now introduce non-positive optimality functions for Problem DC , D
M
C , DO,

and DM
O , based on the Frechet derivatives defined in Lemma 4.3.2.

θC(η) = min
η′∈HC

DJ(η; η′ − η) +
1

2

∥∥η′ − η∥∥2

H2
, (4.9)

θMC (η) = min
η′∈HC

DJM (η; η′ − η) +
1

2

∥∥η′ − η∥∥2

H2
, (4.10)

θO(η) = −1

2
‖∇J(η)‖2H2

, (4.11)

θMO (η) = −1

2

∥∥∇JM (η)
∥∥2

H2
. (4.12)

Proposition 4.3.3. Suppose that Assumptions 10-13 hold. Then the following are true:

i) θC is a continuous optimality function for DC .

ii) θMC is a continuous optimality function for DM
C .

iii) θO is a continuous optimality function for DO.
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iv) θMO is a continuous optimality function for DM
O .

Proof. The proof of i)− ii) follows directly from Lemma 4.3.2 and the arguments used

in the proof of Theorem 4.2.3a in [61], with J or JM replacing f0, HC replacing H,

Lemma 4.3.2 replacing Corollary 5.6.9. The proof of iii) − iv) follows directly from

Lemma 4.3.2 and the arguments used in the proof of Theorem 4.2.3c in [61], with J or

JM replacing f0, H replacing HO, Lemma 4.3.2 replacing Corollary 5.6.9.

In general, the necessary condition based on the L2 variation of the objective

functional will not be equivalent to the Pontryagin Minimum Principle except in the case

where the Hamiltonian is convex in u. However it can be shown that for the Problem

DO, under certain regularity conditions the necessary condition θO(η) = ‖∇J(η)‖2H2
= 0

is equivalent to the stationarity of the Hamiltonian given by

H(x, λ, u, t) = EP
[
f(x(t, ω), u(t), ω)T p(t, ω)

]
,

where p is the adjoint to the state variable x. To see this, suppose the initial condition

is fixed, and note that the stationarity of the Hamiltonian implies that

∂

∂u
H(x, λ, u, t) = EP

[
fu(x(t, ω), u(t), ω)T p(t, ω)

]
= 0

for almost all t when f is sufficiently smooth. Therefore

‖∇J(η)‖2H2
=

∫ 1

0

∥∥EP [fu(x(t), u(t), ω)p(t, ω)
]∥∥2

dt = 0

.

For the Problem DC , the approach of Ref. [57,58] can be extended to produce a

Pontryagin-like necessary condition for global minimizers that are accumulation points
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of global minimizers of the approximate Problem DM
C . A direct extension of Pontrya-

gin’s minimum principle to the UOCP is desirable, as it may lead to insights into new

optimization algorithms, but this approach is not pursued here. For work relating to

this topic see Ref. [24, pp. 80-82].

4.4 Consistency of the Approximation Using Sample Av-

erages

In Section 4.2 we analyzed the convergence of the approximation scheme for

Problems DC and DO using the concept of epiconvergence. Epiconvergence of the objec-

tive functionals guarantees that accumulation points of a sequence of local minimizers

to the approximate problem will be a local minimizer of the original problem. However,

epiconvergence is not sufficient to guarantee that accumulation points of a sequence of

stationary points to the approximate problem are stationary. In this section, we demon-

strate such a property, thus showing that the approximation scheme based on sample

averages is consistent in the sense of Polak [61, Section 3.3].

Definition 6. [61] Let X be a complete separable metric space, let GM : X 7→ R, G :

X 7→ R be lower semi-continuous functions, and let ΓM : X 7→ R,Γ : X 7→ R be

non-positive upper semi-continuous functions. We say that the pair {GM ,ΓM}M∈N is a

consistent approximation to the pair {G,Γ} if:

i) GM epiconverges to J .

ii) If {xM}∞M=1 is a sequence converging to x, then lim supM→∞ ΓM (xM ) ≤ Γ(x).
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We have already shown the almost sure epiconvergence of the approximate

objective functional JM to the objective functional J in Theorem 4.2.3. To establish

the convergence properties of the optimality function θMC , we introduce the following

assumption:

Assumption 14. There exist constants L′f , L
′
F ∈ [1,∞) such that Lf (ω) ≤ L′f and

LF (ω) ≤ L′F almost surely.

Note that this assumption will be valid in the case that Ω is a compact subset

of Rnω and f, F are continuously differentiable. Therefore the assumption is satisfied

for previously considered applications Problem B such as optimal search [57, 58] and

ensemble control [73,74,76].

The following lemma addresses the measurability and continuity of the gradient

of the objective functional.

Lemma 4.4.1. Suppose that Assumptions 10-14 hold. Let η ∈ H. Then the following

are true:

i) ∇ηT (η, ·)(·) : Ω× [0, 1]→ R is measurable.

ii) There exists a compact set U0 ⊂ Rm such that ∇uT (η, ω)(t) ∈ U0 for all η ∈ H, ω ∈

Ω, t ∈ [0, 1].

iii) There exists L′∇T ∈ [1,∞) such that L∇T (ω) ≤ L′∇T almost surely, where L∇T (ω)

is the Lipschitz constant of ∇T (·, ω).

iv) For each M , L∇JM ≤ L′∇T almost surely, where L∇JM is the Lipschitz constant of

∇JM .
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Proof. Part i) follows directly from (4.4-4.5) and the application of Lemma 4.1.3 to

the adjoint system (4.6). Part ii) follows from Lipschitz continuity of fu (Assumption

11) and p (Lemma 4.1.3) and the boundedness of the set H. Part iii) follows from

Assumption 14 and the proof of Lemma 5.6.9b of [61]. Part iv) follows from iii) and the

fact that ∇JM (·, ω) = 1
M∇T (·, ωMi ) where {ωMi }Mi=1 is an independent P -distributed

random draw from Ω.

To simplify notation, for a given η∗ ∈ HC , we introduce the following functions:

i) κMη∗ : HC 7→ R; η 7→
〈
∇JM (η∗), η

〉
H2
,

ii) κη∗ : HC 7→ R; η 7→ 〈∇J(η∗), η〉H2
,

iii) µMη∗ : HC 7→ R; η 7→
〈
∇JM (η), η∗

〉
H2
,

iv) µη∗ : HC 7→ R; η 7→ 〈∇J(η), η∗〉H2
.

Lemma 4.4.2. Suppose that Assumptions 10-13 are satisfied. Then the following hold:

i) κMη∗ → κη∗ uniformly almost surely for each η∗ in HC .

ii) µMη∗ →epi µη∗ almost surely for each η∗ in H2.

Proof. Proof of i): For a given t ∈ [0, 1], because the ∇uT (η, ωi)(t), for i = 1, . . . ,M

are identically distributed, the strong law of large numbers, (4.7), and (4.8) imply

that ∇JM (η∗)(t)→ ∇J(η∗)(t) almost surely. Therefore ∇JM (η∗)→ ∇J(η∗) pointwise

almost surely as M →∞. Recall that ‖η‖H2
≤ ρ1+ρ2 for all η ∈ HC . Therefore for each

ε > 0, there exists K ∈ N such that for each M > K, we have
∥∥∇JM (η∗)−∇J(η∗)

∥∥
H2

<
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ε
ρ1+ρ2

by the dominated convergence theorem. Then

∣∣κMη∗(η)− κη∗(η)
∣∣ =

∣∣〈∇JM (η∗)−∇J(η∗), η〉H2

∣∣ ≤∥∥∇JM (η∗)−∇J(η∗)
∥∥
H2
‖η‖H2

<
ε

ρ1 + ρ2
(ρ1 + ρ2) = ε.

Proof of ii): First note that by Lemma 4.4.1, 〈∇ηT (η, ω), η∗〉H2
is continuous in η and

measurable in ω and therefore is a random lower semi-continuous function by Propo-

sition 4.1.2 and Definition 4. Because µη∗(·) = EP 〈∇ηT (·, ω), η∗〉H2
by the proof of

Lemma 4.3.2, µη∗ is the expectation of a random lower semi-continuous function and is

bounded by Lemma 4.4.1iii. The result then follows from (4.7), (4.8) and Proposition

2.4.1.

4.4.1 Consistency of the Approximation the Constrained Problem

Lemma 4.4.2 allows us to establish the almost sure consistent approximation

of Problem DC .

Theorem 4.4.3. Suppose that Assumptions 10-14 hold. Then the sequence {JM , θMC }M∈N

is almost surely a consistent approximation to the pair {J, θC} on the decision space HC .

Proof. The almost sure epiconvergence of JM
∣∣
HC

to J
∣∣
HC

is established in Theorem

4.2.3.

It remains to show that lim supM→∞ θ
M
C (ηM ) ≤ θC(η) whenever ηM → η.
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Suppose that ηM ∈ HC and ηM → η. First we write

θMC (ηM ) = min
η′∈HC

{〈
∇JM (ηM ), η′ − ηM

〉
H2

+
1

2

∥∥η′ − ηM∥∥2

H2

}
= min
η′∈HC

{〈
∇JM (ηM ), η′

〉
H2

+
1

2

∥∥η′ − ηM∥∥2

H2

}
−
〈
∇JM (ηM ), ηM

〉
H2

= min
η′∈HC

{〈
∇JM (ηM )−∇JM (η)), η′

〉
H2

+
〈
∇JM (η), η′

〉
H2

+
1

2

∥∥η′ − ηM∥∥2

H2

}
−
〈
∇JM (ηM ), ηM

〉
H2

= min
η′∈HC

{〈
∇JM (ηM )−∇JM (η)), η′

〉
H2

+ κMη (η′) +
1

2

∥∥η′ − ηM∥∥2

H2

}
−
〈
∇JM (ηM ), ηM − η

〉
H2
− µMη (ηM ). (4.13)

Similarly,

θC(η) = min
η′∈HC

[
κη(η

′) +
1

2

∥∥η′ − η∥∥2

H2

]
− µη(η). (4.14)

We examine the behavior of lim supM→∞ θ
M
C (ηM ) by looking at each expression in

(4.13).

Note that HC is bounded, therefore we have by Lemma 4.4.1iv

〈
∇JM (ηM )−∇JM (η), η′

〉
H2
≤
∥∥∇JM (ηM )−∇JM (η)

∥∥
H2

∥∥η′∥∥
H2

≤L∇JM

∥∥ηM − η∥∥
H2

∥∥η′∥∥
H2
→ 0

uniformly in η′ on HC . Similarly, because

∥∥η′ − ηM∥∥2

H2
−
∥∥η′ − η∥∥2

H2
=
∥∥ηM∥∥2

H2
− ‖η‖2H2

+ 2〈η − ηM , η′〉H2 → 0
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uniformly in η′ to 0 on HC , we have
∥∥η′ − ηM∥∥2

H2
→ ‖η′ − η‖2H2

uniformly in η′. This,

combined with the uniform convergence κMη → κη shows that

min
η′∈HC

〈
∇JM (ηM )−∇JM (η)), η′

〉
H2

+ κMη (η′) +
1

2

∥∥η′ − ηM∥∥2

H2

→ min
η′∈HC

κη(η
′) +

1

2

∥∥η′ − η∥∥2

H2
(4.15)

Because 〈∇JM (ηM ), ηM −η〉H2 → 0 almost surely and µMη epiconverges to µη, we have,

from (4.13-4.15)

lim sup
M→∞

θMC (ηM ) ≤ θC(η) almost surely.

4.4.2 Consistency of the Approximation of the Unconstrained Prob-

lem

We now demonstrate the almost sure consistent approximation of Problem DO.

Theorem 4.4.4. Suppose that Assumptions 10-13 hold. Then the sequence {JM , θMO }M∈N

is almost surely a consistent approximation to the pair {J, θO} on the decision space HO.

Proof. The almost sure epiconvergence JM
∣∣
HO
→epi JM

∣∣
HO

was established in Theorem

4.2.3; it remains to establish the convergence properties of the optimality functions.

Suppose that ηM ∈ HO and ηM → η ∈ HO. Recall that H2 is a complete Hilbert space.

By Lemma 4.4.2ii and the Riesz Representation theorem, for each f ∈ H∗2 we have

lim infM→∞ f(∇JM (ηM )) ≥ f(∇J(η)) almost surely. By the Hahn-Banach theorem

there exists f∗ ∈ H∗2 such that ‖f∗‖H∗2 = 1 and f∗(∇J(η)) = ‖∇J(η)‖H2
. Furthermore,
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for each M , we have

f∗(∇JM (ηM )) ≤ ‖f∗‖H∗2
∥∥∇JM (ηM ))

∥∥
H2

=
∥∥∇JM (ηM ))

∥∥
H2

Therefore

‖∇J(η)‖H2
= f∗(∇J(η)) ≤ lim inf

M→∞
f∗(∇JM (ηM )) ≤ lim inf

M→∞

∥∥∇JM (ηM )
∥∥
H2

Therefore lim supM→∞ θ
M
O (ηM ) ≤ θO(η) almost surely.

4.5 The Time-Discretized Problem

In Sections 4.2-4.4 we analyzed a computational framework for the uncertain

optimal control problem based on sample average approximations. This process creates

a sequence of approximating standard optimal control problems which can be solved

using existing techniques. In this section, we address the convergence properties of

the method which solves the approximate Problem DM
C using the Euler discretization,

although this approach can be generalized to other direct discretization algorithms such

as Runge-Kutta [41,79].

First we introduce the framework with which we will perform our discrete

approximation, following the framework of Polak [61, Chapter 5]. This will involve

an approximation of the admissable set as well as an approximation of the objective
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functional. For k ∈ {0, 1, . . . , N − 1}, let

πN,k(t) =


√
N for all t ∈ [k/N, (k + 1)/N), if k ≤ N − 1,

0, otherwise

(4.16)

For any integer N ≥ 1, we define the subspace LN ⊂ Lm∞,2[0, 1], by

LN = {u ∈ Lm∞,2[0, 1]|u(t) =

N−1∑
k=0

ukπN,k(t)},

and

HN = Rn × LN ⊂ H∞,2.

We then define the admissable set for the approximate problem as

HC,N =HC ∩HN .

HC,N is the set of all admissable initial state and control pairs for Problem DC , with

the additional requirement that the control be constant on each interval [ iN ,
i+1
N ) for

i ∈ {0, . . . , N − 1}.

For each ω ∈ Ω and η ∈ HN , we approximate the dynamics (4.2) using the

Euler integration formula:

xηN ((k + 1)/N, ω)− xηN (k/N, ω) =
1

N
f(xηN (k/N, ω), uη(k/N)), k ∈ {0, . . . , N − 1}

xηN (0, ω) =ξη + ι(ω)

For a detailed derivation of this approximation scheme and its relation to the nonlinear

programming problem, see Polak [61, Chapter 5].
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Recall that the objective functional to the Problem DC is given by J(η) =

EP [T (η, ω)] where T (η, ω) = F (xη(1, ω), ω). Let TN : H×Ω 7→ R be the time-discretized

approximation to T , i.e. TN (η, ω) = F (xηN (1, ω), ω). Given a random P -distributed

draw {ω1, . . . , ωM} from Ω, we can define the sample average and time-discretized ap-

proximation to the objective functional J by

JMN =
1

M

M∑
i=1

TN (η, ωi). (4.17)

Combining this objective functional with the discretized dynamics

xηN ((k + 1)/N, ωi)− xηN (k/N, ωi) =
1

N
f(xηN (k/N, ωi), u

η(k/N)), (4.18)

k ∈ {0, . . . , N − 1}, ı ∈ {1, . . . ,M}

xηN (0, ωi) =ξη + ι(ωi), ı ∈ {1, . . . ,M}, (4.19)

we can define the fully discretized problem.

Problem BMN
C : Find an initial state and control pair η = (uη, ξη) ∈ HC,N to

minimize the objective functional (4.17) subject to the constraints (4.19).

In order to approximate Problem DC by Problem DMN
C , our desire is to assign

to each sample size M ∈ N a number N (M) of time discretization nodes in such a way

that JMN (M) →epi J . To this end we introduce the following assumption:

Assumption 15. For the function N : N 7→ N, we have N (M)→∞ as M →∞.

In Section 4.2 we showed that JM →epi J as M → ∞. It is well known that

JMN →epi JM as N → ∞ (see Ref. [61, Chapter 4]). However, these conditions are

not sufficient to guarantee that JMN (M) →epi J as M → ∞ for arbitrary assignments
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N : N → N. We demonstrate such a property by analyzing the error introduced by

the time discretization approximation. Our approach will be based on the fact that the

effect of such a time discretization on a standard optimal control problem (which we

can consider as a special case in which the value of the parameter ω is fixed) is known

and is determined by Lf , LF . That is, we can use existing results to uniformly bound

(in both η and ω) the error introduced to Problem DC by approximating T (η, ω) by

TN (η, ω).

Proposition 4.5.1. Suppose that Assumptions 10-15 are satisfied. Then there exists

an KT such that for any η = (ξ, u) ∈ HC , we have

|TN (η, ω)− T (η, ω)| ≤ KT /N (4.20)

for every ω ∈ Ω.

Proof. Follows from Assumption 14, the boundedness of the set HC , and the proofs of

Theorems 5.6.23 and 5.6.24 in Ref. [61].

The fact that this convergence is uniform in both η and ω allows us to address

the convergence JMN →epi J .

Theorem 4.5.2. Suppose Assumptions 10-15 are satisfied. Then JMN (M) →epi J

almost surely.

Proof. In order to establish epiconvergence we must show that

i) lim inf JMN (M)(ηM ) ≥ J(η) whenever ηM → η,
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ii) lim JMN (M)(ηM ) = J(η) for at least one sequence ηM → η.

To do so, note that Assumption 14 implies the existence of a constant LT ∈ [1,∞) such

that |T (η, ω) − T (η′, ω)| ≤ LT ‖η − η′‖ for all η, η′ ∈ HC , ω ∈ Ω. Then consider the

difference∣∣∣J(η)− JMN (M)(ηM )
∣∣∣ ≤ ∣∣J(η)− JM (ηM )

∣∣+
∣∣∣JM (ηM )− JMN (M)(ηM )

∣∣∣
=
∣∣J(η)− JM (ηM )

∣∣+

∣∣∣∣∣ 1

M

M∑
i=1

T (η, ωi)− TN (M)(ηM , ωi)

∣∣∣∣∣
≤
∣∣J(η)− JM (ηM )

∣∣+

∣∣∣∣∣ 1

M

M∑
i=1

T (η, ωi)− T (ηM , ωi)

∣∣∣∣∣
+

∣∣∣∣∣ 1

M

M∑
i=1

T (ηM , ωi)− TN (M)(ηM , ωi)

∣∣∣∣∣
≤|J(η)− JM (ηM )|+ LT ‖η − ηM‖+KT /N (M)

The result then follows from Assumption 15 and the almost sure epiconvergence of JM

to J .

This result establishes that Problem DC can be approximated by a sequence of

high-dimensional nonlinear programming problems by using a sample average scheme to

approximate the expectation over the parameter space and an Euler scheme to discretize

the time domain. The resulting numerical solutions will be meaningful in the sense that

an accumulation point of a sequence of global minimizers to the approximate problem

will be a global minimizer of the original problem. In order to establish a similar

result for stationary points, we must develop optimality conditions for the approximate

problem and analyze the approximation of the adjoint variables. Such a result is beyond

the scope of this work.
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4.6 Numerical Examples

In Section 4.1-4.5 we propose a computational framework for the uncertain

optimal control problem and demonstrated that it can be approximated by a sequence

of high-dimensional nonlinear programming problems (NLPs) under mild regularity as-

sumptions. In this section we provide a number of example problems which demonstrate

this process. Each problem is approximated numerically by taking a random sample of

size M from the parameter space using a Monte Carlo method and approximating the

objective functional using the sample average. The resulting standard optimal control

problem is discretized using a LGL-pseudospectral method with N nodes in the time

domain. This yields an MN dimensional NLP which then is solved using the sequen-

tial quadratic programming package SNOPT [27]. Proposition 2.3.1 and Theorem 4.5.2

guarantee that if the resulting sequence of approximate optimal controls converges in

L2, the accumulation point will be the optimal solution to the original uncertain optimal

control problem.

Consider the problem of designing a controller to drive a harmonic oscillator

with natural frequency in the range ω ∈ [δ0, δ1], so as to minimize the expectation of

some cost functional. The oscillator in question is modelled by the uncertain dynamical

system ẋ1

ẋ2

 =

 0 −ω

ω 0


 x1

x2

+

 u1

u2

 ,
 x1(0)

x2(0)

 =

 1

0

 , (4.21)
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for all ω ∈ [δ0, δ1], t ∈ [0, tf ]. The goal of the UOCP is to minimize the cost functional

J =EP
[
β
[
(x1(tf , ω))2 + (x2(tf , ω))2

]
+ γ

∫ tf

0

[
(u1(t))2 + (u2(t))2

]
dt

]
=β EP

[
(x1(tf , ω))2 + (x2(tf , ω))2

]
+ γ

∫ tf

0

[
(u1(t))2 + (u2(t))2

]
dt (4.22)

Here β and γ are scale factors which weight the priority of minimizing the error of the

final state against minimizing the expended control energy.

In this section we use the computational framework proposed in this paper to

numerically calculate an optimal control for this ensemble of oscillators with or without

the presence of control constraints.

Problem SO Find a control u : (−1000, 1000) 7→ R2 to minimize the objective func-

tional 4.22 subject to the uncertain dynamical system 4.21, where tf = 1, δ0 = 0, δ1 =

20, β = 10, γ = 0.1.

This problem approximates the unconstrained problem by allowing the admissable con-

trols to take values in a large open subset of R. The proposed computational framework

of this paper is applied to this optimal ensemble control problem by taking a random

uniformly distributed draw of size M from the parameter space and approximating

(4.22) by the sample average. The resulting standard optimal control problem is solved

using a direct method based on an LGL-pseudospectral direct discretization scheme

with 54 nodes in the time domain. A sample computed trajectory for M = 26 is shown

in Figure 4.1. The optimal control and a sample of final states for the optimal trajectory
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is shown in Figure4.2.

The antisymmetry of the state dynamics and quadratic form of the cost functional
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State trajectories for unconstrained problem

Figure 4.1: A sample of state trajectories for a controlled ensemble of harmonic os-
cillators with variation in the natural frequency. Here the objective is to minimize a
linear combination of the expectation norm of the final state and the controlled energy
expended, with no constraint on the control. The optimal control is computed the sam-
ple average scheme introduced in this chapter and an LGL quadrature scheme in the
parameter space, along with the NLP package SNOPT.

allow this problem an easily verifiable necessary condition. First we cast the problem

in the form of Section 4.1. We introduce the auxiliary state x3 and define the state
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Figure 4.2: a) The optimal control for the ensemble of simple harmonic oscillators
problem with no control constraint, calculated using a sample average approximation. b)
A sample of final states for a controlled ensemble of harmonic oscillators with variation
in the natural frequency.

dynamics by
ẋ1(t, ω)

ẋ2(t, ω)

ẋ3(t, ω)

 =


0 −ω 0

ω 0 0

0 0 0




x1(t, ω)

x2(t, ω)

x3(t, ω)

+


u1(t)

u2(t)

γ(u1(t))2 + (u2(t))2

 ,

x1(0, ω)

x2(0, ω)

x3(0, ω)

 =


1

0

0

 . (4.23)

The cost functional is then given by

J =EP [F (x(1, ω), ω)] F (x, ω) =βx2
1 + βx2

2 + γx3. (4.24)
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Finally, the adjoint equation defined in (4.6) is given by
ṗ1(t, ω)

ṗ2(t, ω)

ṗ3(t, ω)

 =


0 −ω 0

ω 0 0

0 0 0




p1(t, ω)

p2(t, ω)

p3(t, ω)

 ,

p1(1, ω)

p2(1, ω)

p3(1, ω)

 =


2βx1(1, ω)

2βx2(1, ω)

γ

 . (4.25)

The necessary condition defined in Section 4.3 then requires that for an optimal solution

we have

θMO (η) = ‖∇J(η)‖2 = 0, (4.26)

where ∇J is the Frechet derivative given by

∇J(t) =EP [fTu (x(t, ω), u(t), ω)p(t, ω)]

=EP

 p1(t, ω) + 2γu1(t)

p2(t, ω) + 2γu2(t)



=

 2γu1(t)

2γu2(t)

+ EP

 p1(t, ω)

p2(t, ω)

 . (4.27)

The objective value and optimality function values, for a given sample size is shown in

Figure 4.3.

Problem SC Find a control u : [−1, 1] 7→ R2 to minimize the objective functional

4.22 subject to the uncertain dynamical system 4.21, where tf = π, δ0 = 0, δ1 = 3, β =

1, γ = 0.

In the constrained problem, a smaller range of natural frequencies is used because limi-
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Figure 4.3: a) The value of the objective functional (4.22) for Problem SO computed
using sample averages, as a function of the sample size M . b) The value of the optimality
function (4.26) as a function of the sample size M .

tations on the control input make it more difficult to stabilize the system. As with the

unconstrained problem, the optimal control is computed numerically using the frame-

work proposed in this paper with an LGL-pseudospectral discretization with 36 nodes

in the time domain. A sample of computed state trajectories for M = 74 is shown in

Figure 4.4.

In Section 4.3 it is shown that an optimal solution must satisfy the necessary

condition θC(η) = 0, where θC is given by (4.9). By substituting (4.27) we have

θC(u) = min
u′(t)∈[−1,1]

〈∇J, u′ − u〉2 +
1

2

∥∥u′ − u∥∥2

2

=− 〈∇J, u〉2 +
1

2
‖u‖22 + min

u′(t)∈[−1,1]
〈∇J − u, u′〉+

1

2

∥∥u′∥∥2

2
(4.28)

The value of the objective functional J(u∗M ) and optimality function θC(u∗M ) for a

number of sample sizes M is shown in Figure 4.6. The state variables x(t, ω) and adjoint
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Figure 4.4: A sample of state trajectories for a controlled ensemble of harmonic os-
cillators with variation in the natural frequency. Here the objective is to minimize
expectation of the norm of the final state subject to a pointwise control constraint.
The optimal control is computed the sample average scheme introduced in this chapter
and an LGL quadrature scheme in the parameter space, along with the NLP package
SNOPT.

variables p(t, ω) are calculated using 54 LGL-pseudospectral nodes in the parameter

space and solving the resulting state-adjoint system using the MATLAB’s differential

equation package ode45. The value of θC is then determined using MATLAB’s quadratic

programming package quadprog.
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Figure 4.5: a) The optimal control for the ensemble of simple harmonic oscillators prob-
lem with a pointwise control constrained, calculated using a sample average approxima-
tion. b) A sample of final states for a controlled ensemble of harmonic oscillators with
variation in the natural frequency.
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Figure 4.6: The value of the objective functional (4.22) for Problem SC computed using
sample averages, as a function of the sample size M . b) The value of the optimality
function (4.28) as a function of the sample size M .
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Chapter 5

Conclusion

In this thesis we focus providing computational framework for the solution of

a class of optimal control which incorporate parameter uncertainty into the dynamics,

objective functional, and initial states. This class of problems is inspired by a number of

recently considered applications in optimal control for which the parameter uncertainty

is inherent, such as optimal search and ensemble control. In addition, many existing

applications of optimal control, such as trajectory optimization, can be extended in this

framework to include uncertainty about physical parameters in the dynamical system

or the external environment.

We provide a framework for the numerical solution of this class of problems

based on a discretization of the space of stochastic parameters. In this method, the

uncertain dynamical system is approximated by selecting a finite number from the

parameter space using a numerical integration scheme, and the objective functional is

approximated by a finite sum. The advantage of this approach is that the discretized
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problem is a standard nonlinear optimal control problem which can be solved using

existing methods from computational optimal control.

A rigorous analysis of convergence properties is provided for such a frame-

work. The consistency of the proposed framework is theoretically guaranteed under

mild regularity type of conditions for either a quadrature or Monte Carlo sampling

schemes. In addition, we provide two types of necessary conditions for the uncertain

optimal control problem which can be used for validation and verification of numerically

computed solutions. First, a Pontryagin-like Hamiltonian minimization criterion is de-

rived by analyzing the convergence properties of the dual variables for the approximate

problem. This necessary condition shows that the optimal solution to the uncertain

optimal control problem must minimize the expectation of the Hamiltonian over the

space of stochastic parameters. Second, we provide a necessary condition based on the

L2-Frechet derivative of objective functional in the form of an optimality function. By

analyzing the convergence properties of the optimality functions we demonstrate that

the numerical scheme based on sample average approximation is consistent in the sense

of Polak [61, Chapter 4].

The computational framework as well as theoretical analysis on consistency

can be extended in several directions which could provide interesting topics for future

research. In the following, we briefly list some of these possible extensions.

• Explicit final conditions: In this thesis, we do not consider problems with fixed

end points. Requirement on the final states is implicitly addressed by augment-

ing it into cost functional as a penalty term. However controllability results for
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the ensemble control problem demonstrate that for certain control problems, it

is possible to guarantee the existence of an open loop control to drive the state

trajectories with uncertainty into a given neighborhood of a desired point. For

such problems it may be desirable to restrict the decision space for the optimiza-

tion problem to only those controls which transfer the system to the desired end

state. The computational methods presented in this thesis can be directly imple-

mented on such problems, however, the consistency properties need to be carefully

analyzed.

• Free end-time problems: In this thesis we consider problems with only fixed

end times, which excludes a large number of control applications such as minimum

time problems. It is possible to handle the free end-time by simply projecting

the time domain [t0, tf ] to a fixed computational domain and incorporating the

end-time, tf , into the optimization decision variables. However, the challenge is

that free end-time problems typically associates to explicit conditions on the final

state, which introduces controllability issues. For general nonlinear dynamics,

such controllability results are largely missing.

• State constraints: The results presented in this thesis can potentially be ex-

tended to problems with pointwise state constraints, for example, obstacle avoid-

ance type of constraints encountered in motion planning. However, this extension

presents unique challenges in both how to formulate the constraints and how to

determine a control which would satisfy such state constraints for the uncertain
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problem. For instance, the constraint could be formulated so as to keep the

probability of collision with the obstacle within reasonable bounds. However, the

inclusion of such a constraint poses new difficulties in how to formulate necessary

conditions for the problem.

• Improve the efficiency of NLP: When the method presented in this thesis is

applied to an uncertain optimal control problem, the result is a high-dimensional

nonlinear programming problem (NLP). However, this NLP is highly structured,

as the same time discretization step is applied to every node in the parameter

space, and the discretized dynamical systems are coupled only through the open

loop control. It may be possible to explore this structure in the numerical opti-

mization algorithms, thus leading to improved performance for the solution of the

uncertain optimal control problem.
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